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ABSTRACT

Objective: We explored whether use of deep learning to model temporal relations among events in electronic

health records (EHRs) would improve model performance in predicting initial diagnosis of heart failure (HF)

compared to conventional methods that ignore temporality.

Materials and Methods: Data were from a health system’s EHR on 3884 incident HF cases and 28 903 controls,

identified as primary care patients, between May 16, 2000, and May 23, 2013. Recurrent neural network (RNN)

models using gated recurrent units (GRUs) were adapted to detect relations among time-stamped events (eg,

disease diagnosis, medication orders, procedure orders, etc.) with a 12- to 18-month observation window of

cases and controls. Model performance metrics were compared to regularized logistic regression, neural net-

work, support vector machine, and K-nearest neighbor classifier approaches.

Results: Using a 12-month observation window, the area under the curve (AUC) for the RNN model was 0.777,

compared to AUCs for logistic regression (0.747), multilayer perceptron (MLP) with 1 hidden layer (0.765), sup-

port vector machine (SVM) (0.743), and K-nearest neighbor (KNN) (0.730). When using an 18-month observation

window, the AUC for the RNN model increased to 0.883 and was significantly higher than the 0.834 AUC for the

best of the baseline methods (MLP).

Conclusion: Deep learning models adapted to leverage temporal relations appear to improve performance of

models for detection of incident heart failure with a short observation window of 12–18 months.
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OBJECTIVE

Before diagnosis of a disease, an individual’s progression mediated

by pathophysiologic changes distinguishes those who will eventually

get the disease from those who will not. Detection of temporal event

sequences that reliably distinguish disease cases from controls may

be particularly useful in improving predictive model performance.

We investigated whether recurrent neural network (RNN) models

could be adapted for this purpose, converting clinical event se-

quences and related time-stamped data into pathways relevant to

early detection of disease.

Electronic health record (EHR) data capture rich clinical and re-

lated temporal information. Patient health care encounters are well

documented (eg, diagnoses, medications, and procedures) and time-

stamped. However, EHR data are highly complex, given the struc-

ture and breadth of information captured (spanning provider behav-

ior, care utilization, treatment pathways, and patient disease state)

and irregular sampling frequency. To date, most predictive modeling

work using EHR data rely on aggregate features (eg, event count

and event average). Temporal relations among disaggregated fea-

tures (eg, medication ordered at one time and procedure performed

at another) are not captured using these methods.

We applied RNN models to heart failure (HF) cases and controls

using longitudinal EHR data, and compared the model performance

to traditional machine learning approaches. HF is one of the leading
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causes of morbidity and mortality among elderly individuals in de-

veloped economies and accounts for significant and growing health

care expenditures.1,2 Improved early detection could open new op-

portunities for delaying or preventing progression to diagnosis of

HF and reduce cost.

BACKGROUND AND SIGNIFICANCE

Early detection of heart failure
Onset of HF is associated with a high level of disability, health care

costs, and mortality (roughly 50% risk of mortality within 5 years

of diagnosis).1,2 There has been relatively little progress in slowing

the progression of this disease, largely because it is difficult to detect

before actual diagnosis. As a consequence, intervention has primar-

ily been confined to the time period after diagnosis, with little or no

impact on disease progression. Earlier detection of HF could lead to

improved outcomes through patient engagement and more assertive

treatment with angiotensin-converting enzyme inhibitors or angio-

tensin II receptor blockers, mild exercise, reduced salt intake, and

possibly other options.3–6

Previous work on early detection of HF has relied on conven-

tional modeling techniques, such as logistic regression or support

vector machine (SVM), that use features representing the aggrega-

tion of events in an observation window and exclude temporal rela-

tions among events in the observation window.7–9 In contrast,

recurrent neural network (RNN) methods capture temporal patterns

present in longitudinal data. RNN models have proven effective in

many difficult machine learning tasks, such as image captioning10

and language translation.11 Extending these methods to health data

is sensible.

Applications of deep learning
Deep learning methods have recently led to a renaissance of neural

network–based models. Pioneering studies introduced stacked re-

stricted Boltzmann machines12 and stacked autoencoders,13 which

showed impressive performance in image processing, employing the

layer-wise pretraining technique. Since then, variations of neural

network application have explored deep architectures in computer

vision,14–16 audio processing,17,18 and natural language processing

(NLP),11,19–21 among other fields.

RNN models are naturally suited to temporal sequenced data,

and several variants have been developed for sequenced features.

Hochreiter and Schmidhuber22 proposed long short-term memory

(LSTM), exhibiting impressive performance in numerous sequence-

based tasks such as handwriting recognition,23 acoustic modeling of

speech,24 language modeling,25 and language translation.26 Cho

et al.11 proposed the gated recurrent unit (GRU) model, structurally

similar to but simpler than LSTM, and showed comparable, if not

better, performance.27 In the RNN work described herein, we used

the GRU structure to model the temporal relations among health

data from patient EHRs to predict the future diagnosis of HF.

Health care applications of deep learning
Researchers have recently started to apply deep learning methods to

clinical applications. Lasko et al.28 used autoencoders to learn phe-

notypic patterns from serum uric acid measurements. Che et al.29

used deep neural networks with incremental learning on clinical

time series data to discover physiologic patterns associated with

known clinical phenotypes. Both works,28,29 however, focused on

learning patterns from clinical records rather than predicting a clini-

cal event. Hammerla et al.30 applied restricted Boltzmann machines

on time series data collected from wearable sensors to predict the

disease state of Parkinson’s disease patients. Lipton et al.31 used

LSTM for multilabel diagnosis prediction using pediatric ICU time

series data (eg, heart rate, blood pressure, glucose level, etc.). Both

of these studies30,31 used multivariate time series data from patients,

which focused on very different clinical conditions, with continuous

time series data. Our study focuses on early detection of HF for the

general patient population based on widely available EHR data such

as time-stamped codes (diagnosis, medication, procedure).

Deep learning techniques have been recently applied to clinical

text data (eg, PubMed abstracts, progress notes) using Skip-

gram20,32,33 to learn relationships among clinical processes or uni-

fied medical language system (UMLS) concepts. Choi et al.34 applied

Skip-gram to longitudinal EHR data to learn low-dimensional repre-

sentations for medical concepts such as diagnosis codes, medication

codes, and procedure codes,35 and to learn representations of medi-

cal concepts. We borrowed from this prior work to leverage similar

representation of medical concepts through Skip-gram but focus on

temporal modeling using RNN for predicting HF.

Time series analysis of EHRs
Traditional time series methods using linear models for low-

dimensional data have been widely applied to EHRs: modeling the

progression of chronic kidney disease to kidney failure using the

Cox proportional hazard model,36 the progression of Alzheimer’s

disease using the hidden Markov model37 and fused group Lasso,38

the progression of glaucoma using using a 2-dimensional

continuous-time hidden Markov model,39 the progression of lung

disease using graphical models with the Gaussian process,40 the pro-

gression of chronic obstructive pulmonary disease using the Markov

jump process,41 and the progression of multiple diseases using the

Hawkes process.42 These previous works were not able to model

high dimensional non-linear relations as well as RNN. We focused

on predicting the onset of HF using longitudinal structured patient

data such as diagnosis, medication, and procedure codes. We used

RNN, which provides a nonlinear improvement in model generali-

zation and more scalability than many of the traditional methods,

thanks to a more optimized software package and parallel architec-

ture such as a graphics processing unit.

MATERIALS AND METHODS

GRU model for HF prediction
To represent clinical events in EHR data as computable event se-

quences, we adopted the one-hot vector format, often used for NLP

tasks.43 Figure 1A provides an example of how EHR events are rep-

resented as a set of one-hot vectors. Each of the N unique clinical

events was represented as an N-dimensional vector, where one di-

mension is set to 1 and the rest are 0. Using these one-hot vectors, a

sequence of clinical events (Figure 1B) can be converted to a se-

quence of one-hot vectors (Figure 1C). Such sequences were used to

train the models, as described in the next section.

The proposed GRU model for HF prediction is an extension of

the RNN framework, schematically depicted in Figure 2.

Given a sequence of clinical visits of length T (Figure 2A), the

GRU accepts an input vector xt (in our base case, one-hot vectors

representing clinical codes) at each timestep t, while storing infor-

mation in a single hidden layer h whose state changes over time

ðht�1;ht; htþ1Þ. After seeing the entirety of clinical events, we applied
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logistic regression to the final hidden state vector hT and produced

the scalar value y, which estimates the patient-specific risk score for

future diagnosis of HF.

The dashed box of Figure 2A corresponds to the GRU model we

used for HF prediction. GRU has 4 components (Figure 2B): zt, the

update gate at timestep t; rt, the reset gate at timestep t; ~ht, the inter-

mediate memory unit at timestep t; and ht, the hidden layer at time-

step t. The mathematical formulation of Figure 2B is as follows:

zt ¼ r W zxt þ Uzht�1 þ bzð Þ

rt ¼ r W rxt þ U rht�1 þ brð Þ

~ht ¼ tanh Whxt þ r t � Uhht�1 þ bhð Þ

ht ¼ zt � ht�1 þ 1� ztð Þ � ~ht

where r() is the sigmoid function, and Ws, Us, and bs are the weight

matrices and bias terms for calculating both gates zt and rt and the

intermediate memory unit ~ht, respectively. Note that in GRU, the

previous hidden layer ht�1 and the current input xt do not directly

change the value of the current hidden layer ht. Instead, they change

the values of both gates zt, rt and the intermediate memory unit ~ht.

Then the current hidden layer ht is determined by ~ht and zt, where �
denotes element-wise multiplication (ie, Hadamard product) and

both gates have values between 0 and 1. Therefore, if rt is close to 0,
~ht will disregard ht�1. If zt is close to 1, ht will disregard xt and re-

tain the same value as ht�1. Simply put, the reset gate allows the hid-

den layer to drop any information that is not found to be useful in

predicting the future, and the updated gate controls how much in-

formation from the previous hidden layer should be retained in the

current hidden layer. This characteristic of GRU is especially useful

as it is not easy to identify information essential to predicting HF di-

agnosis, given the enormous volume of EHR data. GRU model

training learns to keep or ignore particular inputs (eg, diagnoses,

medications, procedures) at each timestep as it sees fit.

We also tested a GRU model to determine if feature representation

of the time between an event and the index date in combination with

the one-hot input vectors improved model performance. Specifically,

the model was trained by appending to the input vector xt an extra di-

mension that represents the time as a logarithm of the number of days

between the event time t and the index date T. We applied logarithm

transformation to minimize the skewed distribution of the durations.

We also explored the time between consecutive visits or without loga-

rithm transformation, but the above method provided the best result.

The logistic regression model applied to the final state of the hid-

den layer ht is formulated as

y ¼ r wThT þ b
� �

where w and b are the weight vector and bias for logistic regression.

To learn the parameters of the proposed model, we set the

cross-entropy of the scalar outcome y as the loss function and tried

to minimize it in terms of W{z,r,h}, U{z,r,h}, b{z,r,h}, w, and b. The loss

function is as follows:

Loss ¼ �
XP

i¼1

cðiÞlog yðiÞ þ 1� cðiÞ
� �

log 1� yðiÞ
� �� �

where P is the total number of patients, cðiÞ is the HF case indicator

for the i-th patient where 1 indicates HF case and 0 control, and

yðiÞ is the risk score of the i-th patient calculated by the model.

Minimization can be performed through the back-propagation and

mini-batch stochastic gradient descent.44 The gradients are auto-

matically calculated by Theano,45 a deep learning software for

Python.

Medical concept vectors
We constructed medical concept vectors that improve the one-hot

vectors as the input xt. We leveraged an NLP embedding technique,

Skip-gram,20 to train vector representations of diagnosis codes, med-

ication codes, and procedure codes. The resulting vector representa-

tion, denoted as a medical concept vector, is intended to capture the

hidden relations among various codes.

We trained medical concept vectors by sliding a fixed-size win-

dow on a sequence of codes, maximizing the log probability at each

step as follows:

Maximize
1

T

XT

t¼1

X
�w�j�w;j 6¼0

logp ctþjjct

� �
;

where p ctþjjct

� �
¼

exp v ctþj

� �T
v ctð Þ

� �
XN

c¼1
exp v cð ÞTv ctð Þ
� �

where T is the number of codes in all of a patient’s visits, w is the

size of the window, ct is the code at position t, and v(ct) is the vector

representation of the code ct. Simply put, Skip-gram tries to maxi-

mize the inner product of the vector representations of temporally

proximal concepts. The size of the window and the dimensionality

of the vector representation are hyperparameters generally set to 5

and 50–1000, respectively.20 We trained the medical concept vectors

using the encounter, medication order, procedure order, and prob-

lem list, with window size 5 and resulting dimensionality 100. Our
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Figure 1. (A) One-hot vector encoding of clinical events. t in (B) indicates the

time at which the event occurs, assuming we make the prediction at time t7.

We appended the time duration feature at the end of the one-hot vector, as

shown in (C).
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other work presented the Skip-gram application for health care with

a focus on interpretation of the resulting medical concept vectors.35

This study, on the other hand, focuses on the sequential nature of

the longitudinal EHR by using RNN for early detection of HF.

Data description
Data were from Sutter Palo Alto Medical Foundation (Sutter-

PAMF) primary care patients. Sutter-PAMF is a large primary care

and multispecialty group practice that has used an Epic Systems

Corporation EHR for more than a decade. EHR data on primary

care patients were extracted from encounters occurring between

May 16, 2000, and May 23, 2013. The EHR dataset documented

care delivered in the outpatient setting and included demographics,

tobacco and alcohol consumption, clinical and laboratory values,

International Classification of Disease version 9 (ICD-9) codes asso-

ciated with encounters, orders, and referrals, procedure information

in Current Procedural Terminology (CPT) codes, and medication

prescription information in medical names. The dataset contained

approximately 58 652 000 medical codes assigned to patients. Pro-

vider notes were not used in the present work, but could be included

in a future effort.

Definitions of cases and controls
A density sampling design was used for the longitudinal records of the

Sutter-PAMF patient population.46 Cases met the criteria for incident

onset of HF, described in Vijayakrishnan et al.47 and adapted from Gur-

witz et al.48 Incident cases were of patients 40–85 years of age at the

time of HF diagnosis. HF diagnosis (HFDx) was operationally defined

as follows: (1) Qualifying ICD-9 codes for HF appeared as an encounter

diagnosis or as the indication for a medication order. (Qualifying ICD-9

codes are listed in the supplementary material.) Qualifying ICD-9 codes

with image and other related orders were excluded, because these orders

often represented a suspicion of HF, where the results are often negative.

(2) A minimum of 3 clinical encounters with qualifying ICD-9 codes

had to occur within 12 months of each other, where the date of diagno-

sis was assigned to the earliest of the 3 dates. If the time span between

the first and second appearance of the HF diagnostic code was >12

months, the date of the second encounter was used as the first qualifying

encounter. The point upon each patient’s timeline at which incident HF

was established was denoted as HFDx.

Up to 10 eligible primary care clinic-, sex-, and age-matched (in 5-

year intervals) controls were selected for each incident HF case, yield-

ing an overall ratio of 9 controls per case. Each control was also as-

signed an index date, which was the HFDx timepoint of the matched

case. Primary care patients were eligible to be controls if they did not

meet the operational criteria for HF diagnosis prior to the HFDx

timepoint plus 182 days of their corresponding case. Other details on

matching are described in the supplementary section.

We extracted all records from the 18-month period before the

HFDx, constituting an interval that could be partitioned into an ob-

servation window and a prediction window. The medical records

within the observation window were used as the dataset for training

models. Diagnosis, medication, and procedure codes assigned to

each patient were temporally ordered. Multiple diagnoses/medica-

tions/procedures at a single visit were represented as multiple one-

hot vectors with a random order.

Model evaluation
Baseline models for performance comparison

We trained 4 classification models—regularized logistic regression,

multilayer perceptron (MLP), support vector machine (SVM), and

K-nearest neighbor (KNN)—in addition to our proposed gated re-

current unit (GRU) model.
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Figure 2. The GRU model architecture (A), and building blocks (B). Note that vectors are denoted in bold lowercase, matrices in bold uppercase, and scalars in

plain lowercase letters.
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Training strategy

All models were trained using the dataset created from the 18-month

period before the HFDx. We iteratively divide the data into train,

validation, and test with a ratio of 5:1:1, and report the model per-

formance on the test set as the area under the ROC curve (AUC).

Since probability is not explicitly estimated using the baseline SVM,

we used the confidence score of SVM to calculate the AUC. Detailed

training strategy is given in the supplementary material.

Input features and algorithms

We noticed that the sparseness and high-dimensionality of one-hot

coded input vectors could be mitigated via 2 alternative approaches:

The traditional approach is to use standard medical concept

groupers. ICD-9 diagnosis codes can be grouped by the Clinical

Classification Software (CCS) diagnosis grouper49 into 283 groups,

medication codes can be grouped by the Generic Product Identifier50

into 96 groups, and CPT procedure codes can be grouped by the

CCS procedure grouper51 into 244 groups. Alternatively, medical

concept vectors based on Skip-gram can be used to capture relations

among diagnoses, medications, and procedures.

Training data for the 2 GRU models (with and without time du-

ration information) were constructed in the same fashion for all 3

types of input (one-hot encoding, grouped codes, and medical con-

cept vectors based on Skip-gram).

Logistic regression, MLP, SVM, and KNN were also trained with

these 3 types of aggregated feature vectors. In the aggregated one-hot

vector, each dimension represents the total number of occurrences of a

specific code in the observation window. Aggregated grouped code vec-

tors and aggregated medical concept vectors are generated in the same

fashion, except the one-hot vectors are replaced by grouped code vec-

tors or pretrained medical concept vectors. All aggregated input vectors

were normalized to zero mean and unit variance.

Evaluation strategy

The utility of a model is related, in part, to how much data are re-

quired for application and how far into the future an accurate pre-

diction can be made. We conducted experiments to examine model

performance for varying lengths of the prediction window (ie, time

before HFDx) and the observation window (ie, length of time before

the beginning of the prediction window), where features were only

extracted from the defined observation window (Figures 3A and B).

Note that we trained separate models for each observation window

size so that models could learn optimal features from patient records

of different lengths.

Implementation details

The GRU models, logistic regression, and MLP were implemented

with Theano 0.7.45 Adadelta52 was used for model training because

it does not depend strongly on the learning rate setting. SVM and

KNN were implemented with Python Scikit-Learn 0.16.1. An

Ubuntu machine with Xeon E5-2697, 128 GB memory, and Nvidia

Tesla K80 was used to train all models. Hyperparameters used for

training each model are described in the supplementary section. We

have made our codes and synthetic data available on a public reposi-

tory (https://github.com/mp2893/rnn_predict).

EXPERIMENT RESULTS

Data processing
From random samples of 265 336 Sutter-PAMF patients, 4178 inci-

dent HF cases and 29 139 control patients were identified. The aver-

age number of clinical codes assigned to each patient was

approximately 72, and there were 18 181 unique clinical codes

(6910 diagnosis codes, 6897 medication codes, and 4374 procedure

codes) in total. The full sample of 265 336 was used for training the

medical concept vectors, and the incident HF cases and controls

were used for all other model training and evaluation tasks.

Performance of HF diagnosis prediction models
The average AUC of cross-validation for all models is shown in Fig-

ure 4, where all models were trained and tested using the dataset cre-

ated with the 12-month observation window and the 6-month

prediction window. The colors in Figure 4 represent different train-

ing input vectors, and the error bars indicate the standard deviation

derived from the cross-validation. GRU models outperformed other

models, as shown in Figure 4.

We increased the observation window to the full 18 months of

patient history and zero prediction window, as shown in Figure 5.

All models were again trained and tested for this experiment. The

GRU model consistently outperformed all the other methods, with

0.883 AUC. Models trained using the medical concept vectors sig-

nificantly outperformed models trained by one-hot vectors, and also

outperformed models trained by grouped code vectors.

Prediction/observation length and prediction power

Tables 1 and 2 show the cross-validation AUCs resulting from ex-

periments described in Figures 3A and B. These tables show that

GRU outperformed all other models in all observation and predic-

tion window sizes.

Prediction time

Table 3 shows the time required to make a prediction for a single patient

for each model. We used models that were trained by medical concept

vectors. The time was calculated by averaging the times the models took

to make predictions on the test sets from the 6-folds using only the CPU.

Scalability of our approach

Figure 6 depicts the training time of 2 different GRU models for varying

numbers of patients, with maximum gradient decent epoch set to 10.

Error analysis
We analyzed the incorrect predictions made by the GRU model us-

ing temporal data and trained on the 12-month observation window

and the 6-month prediction window. We sampled 100 patients each

Time

HF diagnosis date

Prediction window

6 months

Observation window

3 ~ 12 months

Records used for HFprediction 

Time

HF diagnosis date

Prediction window

3 ~ 9 months

Observation window

9 months

Records used for HF prediction 

A

B

Figure 3. Two experimental settings where we alternately changed the length

of the prediction window and the observation window. In (A), the prediction

window was fixed at 6 months, while we varied the length of the observation

window. In (B), the observation length was fixed at 9 months, while we varied

the length of the prediction window.
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from false negatives (FNs), false positives (FPs), true positives (TPs),

and true negatives (TNs). This procedure was performed for all 6-

folds, which gave us 600 FN/TN/TP/FP samples. The characteristics

of the samples are shown in Table 4.

Many of the incorrect predictions made by the GRU model can

be attributed to visit frequency (Table 4). The second and third col-

umns of Table 4 suggest that the GRU tends to give high prediction

scores to patients who frequently visit the hospital. The fourth col-

umn, however, suggests that the number of codes assigned at each

visit does not generally affect HF prediction.

The second aspect is the type of code. The last column shows

that the GRU tends to give high prediction scores to patients with

heart-related diseases such as atrial fibrillation and coronary athero-

sclerosis. Use of anticoagulants also seems to play an important role.

Hypertension, an important factor for cardiovascular disease,53 is

also frequent in patients with high prediction scores. However, hy-

pertension, being a very common disease among adults,53 does not

seem to qualify as an important feature in predicting HF, since it is

also frequent among patients with low prediction scores. Overall,

we can see that frequent codes are similar between FN samples and

TN samples, and also between FP samples and TP samples.

The two most likely explanations for FN samples showing a

similar pattern to TN samples are: (1) FN samples are related to

acute HF (e.g., due to myocardial infarction) that shows little

symptomatology before manifestation, and (2) there could be miss-

ing data of FN samples due to either lack of hospital visits or visits

to hospitals that are not associated with Sutter. FP samples seem to

be from patients who did not have HF even though their symptoms

were very similar to those of patients with TP samples. Diseases

that are highly related to HF, such as atrial fibrillation and coro-

nary atherosclerosis,54 do not always lead to HF. Overall, although

the GRU shows impressive predictive performance, it seems to be

confused by some cases and controls with similar patterns. We pre-

dict that using even richer information such as lab results or medi-

cal notes will help overcome this challenge and yield an even

higher AUC.

Figure 4. Heart failure prediction performance of the GRU and baseline models. All models were trained and tested using the dataset created from the 12-month

observation window and the 6-month prediction window. The values of the AUC and the standard error are provided in the supplementary section.

Figure 5. Heart failure prediction performance of the GRU and baseline models. All models were trained and tested using the dataset created from the 18-month

observation window and 0-month prediction window. The values of the AUC and the standard error are provided in the supplementary section.
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DISCUSSION

The GRU model results in Figure 4 represent state-of-the-art predic-

tion performance achieved by applying deep learning to discover com-

plex relationships within EHR data. Of the models evaluated, the

best performance was achieved with GRU that used temporal data

and was trained with medical concept vectors. GRU models also sig-

nificantly outperformed traditional machine learning models that rely

on aggregate features (Figure 4) and trained with one-hot vectors or

grouped code vectors. However, the baseline models trained with

medical concept vectors showed comparable performance to the

GRU models trained with one-hot vectors. This result suggests a po-

tential benefit of medical concept vectors, which is especially useful

when a good domain ontology is absent. Interestingly, the perfor-

mance gain for GRU models achieved by using duration information

was modest. We suspect this is due to the irregular pattern of patients’

hospital visits. Although applying logarithm transformation improved

the performance sightly, the innate irregularity of the visit pattern

seems to make it difficult for the GRU to learn predictive duration

features.

From Table 1, we see that GRU outperforms all the baseline

models regardless of the observation window size. It seems that the

longer the observation window, the more effectively all models per-

formed. The GRU model produced the highest AUC when the pre-

diction window was reduced to zero, and all data were used for the

observation window. While this result is interesting from a method-

ological standpoint, such a model has limited clinical utility because

it does not predict HF well in advance of a physician. We can see

from Table 2 that all models performed better when predicting near-

future HF cases. However, the prediction window size does not

seem to affect the predictive performance as much as the observation

window size. This suggests that access to duration of patient history

is crucial for accurate HF prediction, perhaps because signs of inci-

dent disease manifest over a period of time.

Apart from KNN, which requires distance calculation between

all data points at prediction time, GRU, being a sequential model,

requires the longest time to make a prediction for a patient, as can

be seen in Table 3. However, it is still able to compute HF risk for 1

million patients in 200 seconds using 100 central processing units,

so cost will not pose a problem in real-world clinical application.

The GRU model using one-hot vectors displayed a super-linear re-

lationship between training time and number of patients, as shown in

Figure 6. On the other hand, the GRU model using medical concept

vectors showed a linear increase. We attribute this to 2 causes. First,

compared to medical concept vectors, whose dimensions are fixed,

one-hot vectors increase their dimensionality as new patients are

added to the training data, since new patients have new medical codes

(diagnoses, medications, procedures). Second, one-hot vectors are

very high-dimensional, and therefore use large amounts of VRAM,

which leads to frequent garbage collection. Although the training

time of the one-hot GRU models behaves near-linearly after 20 000

patients, it is still unfavorable to the medical concept vector case.

Thus, we recommend using medical concept vectors to train GRU, as

they both improve model performance and significantly reduce train-

ing time.

The GRU model that included temporal relations trained on medi-

cal concept vectors provided the best performance of all methods

evaluated. So far our work has only taken a data-driven approach.

We expect that model performance would benefit from using longer

Table 1. AUCs of models while varying the observation window

length

Observation

window

(months)

Logistic

regression

SVM MLP KNN GRU

w/duration

3 0.7210 0.7192 0.7312 0.7038 0.7395

4 0.7272 0.7256 0.7427 0.7084 0.7463

5 0.7314 0.7297 0.7455 0.7154 0.7516

6 0.7344 0.7327 0.7486 0.7165 0.7529

7 0.7388 0.7353 0.7530 0.7175 0.7606

8 0.7422 0.7398 0.7587 0.7253 0.7641

9 0.7441 0.7420 0.7603 0.7274 0.7680

10 0.7461 0.7434 0.7621 0.7311 0.7713

11 0.7462 0.7432 0.7639 0.7272 0.7746

12 0.7467 0.7435 0.7649 0.7293 0.7768

The length of the prediction window was fixed at 6 months. The highest

AUCs among all models are shown in bold.

Table 2. AUCs of models that varied by length of prediction win-

dow between 3 and 9 months

Prediction

window

(months)

Logistic

regression

SVM MLP KNN GRU

w/ duration

3 0.7511 0.7479 0.7650 0.7373 0.7711

4 0.7473 0.7439 0.7632 0.7303 0.7678

5 0.7458 0.7414 0.7620 0.7302 0.7687

6 0.7441 0.7420 0.7603 0.7274 0.7680

7 0.7426 0.7405 0.7617 0.7239 0.7658

8 0.7396 0.7366 0.7569 0.7197 0.7651

9 0.7341 0.7334 0.7558 0.7206 0.7610

The length of the observation window was fixed at 9 months. The highest

AUCs are in bold.

Table 3. Prediction times of various models for a single patient

Performance

metric

Logistic

regression

SVM MLP KNN GRU

Prediction

time

(seconds)

0.000002 0.000034 0.000259 36.66 0.020408
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Figure 6. Training time vs number of patients.
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observation periods and incorporating well-established expert medi-

cal knowledge, such as higher-level features and medical ontologies.

Still, using only the raw medical order records, we were able to pro-

duce innovative, state-of-the-art results for HF diagnosis prediction.

Note that in a real-world setting, however, the performance of the

GRU model could be different depending on the nature of the actual

cohort.

Although this work focused on HF, our approach is general and

may be applied to a wide array of health care–related prediction

problems. Further, the medical concept vectors we used to encode

medical data were shown to generally improve the performance of

both deep learning and conventional models, and thus may have

utility in numerous health care applications where rich information

needs to be succinctly represented.

Future work will focus on evaluating model performance for pre-

diction windows beyond nine months, which may yield models with

even greater clinical implication, and adding higher-level features and

medical ontologies. Another possible enhancement is to consider us-

ing separate HF prediction models for different disease groups, such

as hypertension and diabetes, which can potentially be more discrimi-

native as the cohort is more homogeneous. However, we have to

make sure a sufficient sample size is available for each disease group

before developing separate RNN models. Visualizing the temporal

dynamics of RNN models is another research direction, where cur-

rently only limited work with narrow application focus has been at-

tempted.55

CONCLUSION

We proposed a novel predictive model framework for HF diagnosis

using GRU deep learning methods. Compared to popular methods

such as logistic regression, MLP, SVM, and KNN, GRU models ex-

hibited superior performance in predicting HF diagnosis. By analyz-

ing the results, we described the importance of respecting the

sequential nature of clinical records. Future work will include incor-

porating expert knowledge into our framework and expanding our

approach to additional health care applications.

Table 4.Characteristics of TN, FN, TP, and FP samples

Metric Avg. no. of visits Avg. visit frequency Avg. no. of codes per visit Top 10 most frequent codes

True negative 12.10 Every 20.6 days 3.08 1. Allergic rhinitis

2. Multiple immunotherapy

3. Hyperlipidemia

4. Routine medical examination

5. Screening mammogram

6. Psoriasis

7. Vaccine administration

8. Screening for cancer

9. Need for prophylactic influenza vaccination

10. Hypothyroidism

False negative 13.43 Every 19.0 days 2.94 1. Hypertension

2. Hyperlipidemia

3. Diabetes

4. Hypothyroidism

5. Keratosis

6. Need for prophylactic influenza vaccination

7. Routine medical examination

8. Esophageal reflux

9. Senile cataract

10. Screening mammogram

True positive 31.72 Every 9.7 days 3.05 1. Atrial fibrillation

2. Hypertension

3. Diabetes

4. Long-term use of anticoagulants

5. Hyperlipidemia

6. Chronic kidney disease

7. Anemia, unspecified

8. Coronary atherosclerosis

9. Edema

10. Chronic airway obstruction

False positive 29.95 Every 10.5 days 3.09 1. Atrial fibrillation

2. Hypertension

3. Long-term use of anticoagulants

5. Diabetes

4. Hyperlipidemia

6. Chronic kidney disease

7. Anemia

8. Coronary atherosclerosis

9. Edema

10. Therapeutic drug monitoring
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