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ABSTRACT

Objective: To conduct a systematic review of deep learning models for electronic health record (EHR) data, and

illustrate various deep learning architectures for analyzing different data sources and their target applications.

We also highlight ongoing research and identify open challenges in building deep learning models of EHRs.

Design/method: We searched PubMed and Google Scholar for papers on deep learning studies using EHR data

published between January 1, 2010, and January 31, 2018. We summarize them according to these axes: types

of analytics tasks, types of deep learning model architectures, special challenges arising from health data and

tasks and their potential solutions, as well as evaluation strategies.

Results: We surveyed and analyzed multiple aspects of the 98 articles we found and identified the following an-

alytics tasks: disease detection/classification, sequential prediction of clinical events, concept embedding, data

augmentation, and EHR data privacy. We then studied how deep architectures were applied to these tasks. We

also discussed some special challenges arising from modeling EHR data and reviewed a few popular

approaches. Finally, we summarized how performance evaluations were conducted for each task.

Discussion: Despite the early success in using deep learning for health analytics applications, there still exist a

number of issues to be addressed. We discuss them in detail including data and label availability, the interpret-

ability and transparency of the model, and ease of deployment.
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INTRODUCTION

Electronic health record (EHR) data from millions of patients are

now routinely collected across diverse healthcare institutions. They

consist of heterogeneous data elements, including patient demo-

graphic information, diagnoses, laboratory test results, medication

prescriptions, clinical notes, and medical images. However, it is

challenging to create accurate analytic models from EHR data, be-

cause of data quality, data and label availability, and heterogeneity

of data types. Traditional health analytics modeling often depends

on labor intensive efforts, such as expert-defined phenotyping1 and

ad-hoc feature engineering. The resulting models often have limited

generalizability across datasets or institutions.

Deep learning has had a profound impact in many data analytic

applications, such as speech recognition, image classification, com-

puter vision, and natural language processing.2 It has changed the

data analytic modeling paradigm from expert-driven feature engi-

neering to data-driven feature construction. Over the past few years,

an increasing body of literature confirmed the success of feature con-

struction using deep learning methods (ie., models with multiple

layers of neural networks). Interest in deep learning for healthcare
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has grown for two reasons. First, for healthcare researchers, deep

learning models yield better performance in many tasks than tradi-

tional machine learning methods and require less manual feature en-

gineering. Second, large and complex datasets (eg., longitudinal

event sequences and continuous monitoring data) are available in

healthcare and enable training of complex deep learning models.

However EHR data also introduce many interesting modeling chal-

lenges for deep learning research.

This review summarizes the recent development of deep learning

models for EHR data and suggests future research directions.

METHOD

Literature selection
We conducted a systematic review of deep learning studies using

EHR [or electronic medical records (EMR)] data from PubMed and

Google Scholar. The combined search includes, but is not limited to,

Journal of American Medical Informatics Association (JAMIA),

Journal of American Biomedical Informatics (JBI), Nature Scientific

Reports, PLoS One, ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (KDD), Neural Information Processing

Systems (NIPS) and the Machine Learning for Health Care (MLHC)

conference. We searched using the combinations of keywords from

“deep learning,” “neural networks,” “EHR,” “EMR,” and

“health.” We limited our search to recent papers published between

January 1, 2010, and January 30, 2018, and found total 361

articles. We filtered the initial result set in three steps. First, we

removed duplicate articles based on titles and authors. After dedu-

plication, we identified 290 articles. Second, we conducted a topic

relevance review of these articles by examining titles and abstracts.

For the relevance evaluation, we used the following criteria: since

we focus on deep learning models that use EHR data, we excluded

works that do not utilize deep learning approaches or did not use

EHR data. We include a small number of articles related to medical

imaging or genetic data if such data were used in combination with

EHR. For example, deep learning for imaging classification for

healthcare such as3,4 and predicting the effects of gene expression

mutations such as5 and6 are out of scope of this review. Readers

who are interested in those topics could refer to the surveys.7–9 The

topic relevance review based on titles and abstracts left 182 remain-

ing articles (159 studies about traditional EHR data, and 23 studies

that use medical images and genetic data in addition to EHR data).

In the third step, we read the full text of the remaining articles using

the same inclusion criteria to confirm the final relevancy of these

articles. This left 98 articles to be included in this survey. The litera-

ture selection procedure is illustrated and described in Figure 1.

Assessment focuses
We summarize the basic information of the selected papers in Sup-

plementary Table S1. For each paper, we evaluated three aspects:

1) the category of the venue (eg., medical, informatics, computer sci-

ence journal, or conference), 2) use of EHR data, and 3) target task,

model, and performance. For the use of EHR data, we assessed the

sample size, number of clinical events, the existence of labels

(ie., the availability of gold standard targets of interest, such as mor-

tality and target disease diagnosis), use of longitudinal or temporal

information, handling of data quality (eg., missing or irregularly

sampled data). We divided target tasks into the following categories:

disease detection, sequential prediction of clinical events, concept

embedding, data augmentation, and EHR data privacy. Finally, we

identified the type of deep learning models used in the articles [eg.,

recurrent neural networks (RNN) or convolutional neural networks

(CNN)] and the corresponding performance results [eg., area under

the receiver operating characteristic curve (AUC)¼0.8]. We sum-

marized the modeling challenges and solutions from the reviewed

articles into four categories of modeling challenges and possible sol-

utions provided by existing work. Likewise, we generalized several

open challenges that could become promising directions for future

research. We present the challenges and solutions for each article in

Supplementary Table S2.

Task categories
After reviewing the selected articles, we identify five categories of

analytics tasks:

1. Disease detection/classification refers to the tasks of detecting

whether specific diseases can be confirmed in the EHR data.

2. Sequential prediction of clinical events refers to predicting future

clinical events based on past longitudinal event sequences.

3. Concept embedding is algorithmically deriving feature represen-

tation of clinical concepts or phenotypes from EHR data.

4. Data augmentation is creating realistic data elements or patient

records based on real EHR data.

5. EHR data privacy refers to the techniques that protect patient

EHR privacy and confidentiality, eg., de-identification.

The chosen analytics tasks balance the following priorities:

1) they are supported by the EHR data, 2) they correspond to di-

verse machine learning problems, and 3) they are motivated by im-

portant clinical problems, such as phenotyping complex diseases,

prediction of disease onset, and readmission.

RESULTS

We included 98 articles for full-text review. Of these, two studies

were published in medical journals, 40 in medical informatics ven-

ues, and 56 in computer science venues. While detailed information

for all papers is provided in Supplementary

Table S1, a brief summary is provided here. The summary is

structured as follows: first we describe the analytics tasks and the as-

sociated EHR data. Second, we examine the tasks for several com-

monly used deep learning architectures. Third, we discuss special

challenges rising from modeling EHR data with deep learning, and

present the approaches used in the reviewed articles. Last, we dis-

cuss the evaluation of these tasks.

Analytics tasks using EHR data
Disease classification

The goal of developing a deep learning model for disease classifica-

tion is to map the input EHR data to the output disease target via

multiple layers of neural networks. Of the surveyed articles, some

used disease-specific datasets. Examples include the Pooled Resource

Open-Access Amyotrophic Lateral Sclerosis (ALS) Clinical Trials

data used in10 and the Parkinson’s Progression Markers Initiative

data used in.11 Some studies include data from multiple modalities

(eg., cognitive assessments, vital signs, medical images), and support

both binary classification (eg., onset of disease12,13) and multi-class

classification (eg., classification of stages of Parkinson’s disease14)

Besides disease-specific multimodal data, some studies used multi-

variate time series data. For instance,15 applied convolutional

neural networks on multivariate encephalogram (EEG) signals for
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automated classification of normal, preictal, and seizure subjects.

In13, a long short-term memory model (LSTM) was developed using

vital sign series from the Medical Information Mart for Intensive

Care III (MIMIC III16) for sepsis detection. Automatic coding of

clinical notes according to diagnosis or disease codes is another type

of multilabel classification task.17–20 In20, clinical documents from

the MIMIC III dataset were automatically tagged with related diag-

nosis codes using the hierarchical attention bidirectional gated re-

current unit (GRU) model. In18, an interpretable model based on

convolution plus attention model architecture was introduced to

provide an explanation to the classification from clinical notes to di-

agnosis codes. In21 and22, deep feedforward neural networks and

convolutional neural networks were applied, respectively, to free-

text pathology reports to automate the extraction of the primary

cancer sites and their laterality.

Sequential prediction of clinical events

When modeling longitudinal EHR data, neural networks were used

to establish relationships between historical observations and future

events. In such cases, one can build predictive models of future

events (eg., clinical outcome such as mortality) based on a patient’s

history. In the reviewed articles, some were conducted to predict the

future onset of a new disease condition such as heart failure (HF)

onset prediction using RNN on longitudinal outpatient data from

Sutter Health.23 In24, using a cohort of 1328, 384 patients

(3 295 775 visits) from the New Zealand National Minimum Data-

set, the deep feedforward neural network was shown to have the

best AUC performance (AUC¼0.734) in predicting next hospital

admission. In25, the authors used 114 003 patient records from Uni-

versity of California, San Francisco (UCSF), from 2012 to 2016, and

the University of Chicago Medicine (UCM) from 2009 to 2016 for

prediction tasks. They tried three deep learning models: one based

on recurrent neural networks, one on an attention-based time-aware

neural network model, and one on a neural network with boosted

time-based decision stumps. They discovered that deep learning

methods were capable of accurately predicting multiple medical

events (eg., the prediction of in-hospital mortality, readmission,

length of stay, and discharge diagnoses) from multiple centers with-

out site-specific data harmonization.

In addition, a large number of articles performed multilabel se-

quential prediction of clinical events using EHR data from a large

number of patients. Multilabel prediction means that each patient

can have multiple target labels co-occur at the same visit (eg., multi-

ple diagnoses in one visit). For instance, in26, encounter records (eg.,

diagnosis codes, medication codes, or procedure codes) of 263 706

patients from Sutter Health were used as input to a RNN model to

predict (all) the diagnosis categories for a subsequent visit. Besides

predicting disease diagnoses or hospital admissions, several studies

formulated medication prescription as a sequential prediction prob-

lem. For instance, in27, 610 076 patient records from Vanderbilt’s

Electronic Medical Record were used to perform sequential predic-

tion of medications. Later,28 used 50 206 medical encounter records

from MIMIC III and 2 415 414 medical encounters from Sutter

Health to provide treatment recommendations using a sequence-to-

sequence model to present the relationship between comorbid condi-

tions and a set of medications.

Concept embedding

It is noteworthy that clinical phenotyping is a special case of concept

embedding where various EHR data elements are mapped to the

phenotype of interest. However, general concept embedding also

provides feature representation of those phenotypes (ie., a vector as-

sociated with each phenotype), such as med2vec.29 For concept em-

bedding tasks, deep learning models are often trained in an

unsupervised setting without target labels. To ensure good generali-

zation power, these tasks often leverage massive EHR databases.

For example, the aggregated EHRs of about 700 000 patients from

the Mount Sinai data warehouse30 were used to extract patient

representation (embedding). The resulting concept embedding was

evaluated via disease prediction tasks and compared against other

well-known shallow feature learning algorithms, such as principal

component analysis, k-means clustering, and the Gaussian mixture

model. Results showed disease prediction tasks based on concept

embedding outperformed those achieved using other feature learn-

ing strategies. In29, concept embedding was learned from the data of

550 339 patients from Children’s Healthcare of Atlanta (CHOA)

and demonstrated improved performance in multiple real-world

prediction problems. Other types of concept embedding take only

Figure 1. Illustration of literature search and selection procedure.
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free-text as input, eg.,31, to extract pre-defined medical concepts

from discharge summaries from MIMIC III data and use them to

predict patient phenotypes. However, deep learning models do not

always outperform traditional models, as 32 compared deep models

with shallow models (eg., random forest) using classification tasks

on clinical notes and discovered that when training sample size is

small (eg., 662 total subjects in this case), deep learning shows infe-

rior performance.

Data augmentation

Data augmentation includes various data synthesis and generation

techniques that create either more training data to avoid overfitting

or more labeled data to reduce the cost of label acquisition,33,34 or

even generating adverse drug reaction trajectories to inform poten-

tial risks.35 For example, in35, patients from the New York Univer-

sity database who were exposed to HMG-CoA reductase inhibitors

or statins at any point in time were included. Their total cholesterol

measurements were collected, and were augmented by the Genera-

tive Adversarial Networks (GAN). The generated records were eval-

uated using prediction of drug-induced laboratory test trajectories

tasks and demonstrated good performance. In34, GAN was used to

generate static patient records of discrete events such as diagnosis

counts. The synthetic data achieved comparable performance to real

data on many experiments, including distribution statistics, predic-

tive modeling tasks, and medical expert review.

EHR data privacy

De-identification is a crucial task in preserving privacy of patient

EHR data. Dernoncourt et al. built a RNN based de-identification

system36 and evaluated their system using i2b2 2014 data (1304

notes with a 46 803 word vocabulary) and MIMIC de-identification

data (1635 notes with a 69 525 word vocabulary) and showed better

performance using RNN than existing systems. Later in37, a RNN

hybrid model was developed for clinical notes de-identification

where a bidirectional LSTM model was deployed for character-level

representation to capture the morphological information of words.

Deep learning architectures for analytics tasks
Deep learning allows computational models that are composed of

multiple processing layers to learn representations of data with mul-

tiple levels of abstraction.2 This has dramatically improved machine

learning performance in many domains, such as computer vision,38

natural language processing,39 and speech recognition,40 and has

also demonstrated great performance in healthcare and medical

domains, such as using deep neural networks to detect referable dia-

betic retinopathy.3

Various deep learning architectures besides fully connected neu-

ral networks were used to tackle different challenges as elaborated

below. Figure 2 illustrates commonly used deep architectures.

Table 1 shows the architecture distribution over all tasks.

Recurrent neural networks (RNNs)

RNNs are an extension of feedforward neural networks to model se-

quential data, such as time series,44 event sequences23 and natural

language text.49 In particular, the recurrent structure in RNN can

capture the complex temporal dynamics in the longitudinal EHR

data, thus making them the preferred architecture for several EHR

modeling tasks, including sequential clinical event predic-

tion,23,26,42,47–50,54,55 disease classification,13,20,41–46 and computa-

tional phenotyping.11,14,63 The hidden states of the RNN work as its

memory, since the current state of the hidden layer depends on the

previous state of the hidden layer and the input at the current time.

This also enables the RNN to handle variable-length sequence input.

Two prominent RNN variants with gating mechanisms are widely

used: the LSTM unit,99 and the GRU.100 They are designed to over-

come the vanishing gradient problem as well as capture the effect of

long-term dependencies.

Autoencoders (AEs)

AEs are an unsupervised dimensionality reduction model via non-

linear transformation. For medical concept embedding (eg., embed

different medical codes in a common space), AEs are a preferred

family of models.10,30,63,78,79,82–84 An AE [see Figure 2(e)] maps

inputs to an internal code representation through an encoder, and

then maps the low-dimensional representation back to the input

space through a decoder. The composition of encoder and decoder

is called the reconstruction function. A typical implementation of

the AE minimizes the reconstruction loss, thus allowing AEs to focus

on capturing essential properties of the data, while reducing the di-

mension size. In30, AEs were used to model EHRs in an unsuper-

vised manner to capture stable structures and regular patterns in the

data.

Sparse AE (SAE) and denoising AE (DAE) are two AE variants.

For SAE, the reconstruction loss is regularized via a sparsity penalty

on internal code representation, so that the model will learn sparse

representation. SAE has often been used for unsupervised EHR phe-

notyping83 or sparse EEG feature representation.79,101,102 For DAE,

the reconstruction is based on randomly corrupted inputs, through

which the model gains robustness against missing data or noise.

DAE has been used for learning robust representations of human

physiology,10,30,82 deriving robust patient representation from

EHRs,30 or extracting EHR phenotypes that can be paired with ge-

netic data to identify disease-gene associations.10

CNNs

In image, speech, and video analysis, CNNs exploit local properties

of data (stationarity and the compositionality through local statis-

tics) and utilize convolutional and pooling layers to progressively ex-

tract abstract patterns. For example, CNNs greatly improved the

performance of automatic classification of skin lesions from image

data.4 CNNs work as follows: the convolutional layers connect mul-

tiple local filters with their input data (raw data or outputs of previ-

ous layers) and produce translation invariant local features. Then,

pooling layers progressively reduce the size of the output to avoid

overfitting. Here, both convolution and pooling are locally per-

formed, such that (in image analysis) the representation for one local

feature will not influence other regions. As temporal EHR informa-

tion is often informative, modeling it with CNNs requires consider-

ing how to capture temporality. For example, in12,74, an additional

convolutional operation was conducted over the temporal dimen-

sion. In103, a hybrid convolutional recurrent neural network for

joint feature extraction and temporal summarization was used. Be-

sides modeling images and event sequences, CNNs have been used

to label clinical text.18,20

Unsupervised embedding

Several other unsupervised learning methods besides AEs have been

applied to EHR concept representations. Word2vec variants have

been applied to learn representation for medical codes.29,104 In

particular, word2vec has been extended to create two-level
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representation for medical codes and clinical visits jointly.29 Word2-

vec has two variants: the continuous bag of words (CBOW) that pre-

dicts target (codes) given surrounding contexts, and the Skip-gram

that predicts surrounding contexts given target (codes). The goal of

these models is to embed terminologies from different domains

into the same space to discover the relations among them (eg.,

Figure 2. Transform longitudinal EHR data into input vectors (top left), which could support different analytics tasks described in the survey (top right). The under-

lying deep learning models are visually described at the bottom (a): Feedforward neural networks use multiple layers of fully connected neural networks and

non-linear activations (eg., sigmoid or rectified linear unit). (b): Recurrent neural networks can process variable-length input sequence using its recurrent connec-

tion. (c): Restricted Boltzmann Machines are bipartite neural networks that consist of binary stochastic nodes. They can capture the latent representation of the in-

put data by learning their generative probability. (d): Generative adversarial networks can generate realistic synthetic samples by training the generator and the

discriminator in an adversarial game. (e): Convolutional neural networks capture local features of the input data, and stack those features up via a sequence of

convolution to derive global features. (f): Word2vec exploits the co-occurrence information of discrete concepts (eg., words in text, codes in EHR data) to derive

concept representations. (g): Denoising autoencoders (AE) try to reconstruct original input from its corrupted version, thus learning robust representations of the

input data.

Table 1. Distributions of models over analytic tasks

Disease Detection or

Classification

Sequential Prediction of

Clinical Events

Concept

Embedding

Data Augmentation EHR

Privacy

RNN and its variants [13, 20, 41–53] [23, 26–28, 42, 48–50, 54–56,

57, 45, 58–62, 41, 25, 45]

[11, 14, 63–66] [67] [36,37]

CNN and its variants [12, 15, 20, 68, 51, 69,70] [71,72, 57, 73] [31, 74, 22, 75–77] NA NA

AE and its variants [78–81] NA [10, 30, 63, 82–87,

11, 30, 88]

[53, 89,90, 86] NA

Unsupervised embedding [91–93] [21, 24, 70, 91, 94] [29, 32, 95, 96, 85, 97] NA [36]

GANs NA [35] NA [33, 35, 98, 89, 56, 98] [34]
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relationships between diseases and drugs). In addition, a Restricted

Boltzmann Machine (RBM) has been used for latent concept embed-

ding.30,95 It uses a generative approach to model the underlying data

generation process of the input, which can also provide latent repre-

sentations for EHR data.

Generative adversarial network (GAN)

GAN105 is an approach for data generation via a game-theoretical

process. The main idea is to train two neural networks: a generator

and a discriminator. The generator takes random noise as input and

generates samples, while the discriminator takes both real samples

and the generated samples as input and tries to distinguish between

the two. The two networks are trained alternatively, with the expec-

tation that the competition will drive the generator to produce more

realistic samples and the discriminator to achieve greater distin-

guishing power. Recently, GAN has been used in the healthcare do-

main for generating continuous medical time series98 and discrete

codes.33–35

Special challenges and possible solutions
Special challenges arise from EHR data (eg., temporality, irregular-

ity, multiple modalities, lack of label) and model characteristics (eg.,

interpretability). In this section, we elaborate on those challenges

and describe possible solutions from the surveyed articles. The de-

tailed summary can be found in Supplementary Table S2.

Temporality and irregularity

Longitudinal EHR data describes the trajectories of patients’ health

conditions over time. The short-term dependencies among medical

events in EHRs were considered as local context for patient history

and the long-term effects provided global context.29 Such contexts

impact the hidden relations among the clinical variables (eg., diag-

noses, procedures, medications, etc.) and future patient health out-

comes (ie., disease or readmission). However, it is challenging to

identify the true signals from the long-term context due to the com-

plex associations among the clinical events.11,14,54,106,107 In addi-

tion, some found patient records vary significantly in terms of data

density, since events are irregularly sampled.11,14,25 Such irregular-

ity, if not properly handled, would affect the model performance.

Gated architecture. LSTM or GRUs units are the preferred choice to

solve the challenge of extracting informative long-term context due

to their abilities to handle long-term dependencies using gated struc-

tures.26,49,54 are examples in which LSTMs or GRUs were applied

to model long-term dependencies between clinical events and to

make predictions. In43, LSTM was used to find long-term dependen-

cies of codes in discharge notes.

Strategies for irregularity. To solve the challenge of time irregularity,

several strategies were proposed.14 borrowed the idea of dynamic

time warping, an algorithm measuring similarity between two vary-

ing speed temporal sequences, and modeled it into the gate parame-

ters of 2D-GRU, thus aligning EHR sequences pairwise.11 proposed

to learn a subspace decomposition of the LSTM memory, thus dis-

counting the effect of the memory according to the elapsed time.

Multi-modality

EHR data encompass multiple data modalities, including numeric

values such as lab tests, free-text clinical notes, continuous monitor-

ing data, such as electrocardiography (ECG) and electroencephalog-

raphy (EEG), medical images and discrete codes for diagnosis,

medication, and procedures. Researchers have confirmed that find-

ing patterns among multimodal data can increase the accuracy of di-

agnosis, prediction, and overall performance of the learning system.

However, multimodal learning is challenging due to the heterogene-

ity of the data. Existing work often took a multitask learning ap-

proach to jointly learn data across multiple modalities.62,108–110

Multitask learning. Multi-modal EHR learning often utilizes a

strategy that requires certain neurons in the neural network model

to be shared among all tasks, and certain neurons to be specialized

for specific tasks.62,108–110 The tasks could be different types of

lab tests58 or data modalities.62,108–110 For example, in109, the

authors took a multitask learning approach to jointly model the

prediction tasks based on two data modalities: medical codes

and natural language text from clinical notes, and empirically

demonstrated improved performance. In110, each modality, com-

posed of observed counts, is represented as a Poisson distribution,

parameterized in terms of hidden binary units. Information from

different modalities was then shared via a feedforward network of

common hidden units.

Lack of labels

In our setting, labels refer to the gold standard target of interest,

such as true states of clinical outcomes or the true disease pheno-

types. Gold standard labels are often not consistently captured in

EHR data and are thus typically unavailable in large numbers for

training models. Identifying effective ways to label EHR records is

one of the biggest obstacles to deep learning on EHR data. Label ac-

quisition requires domain knowledge, often involving highly trained

domain experts. In practice, a “silver standard” is often adopted.

For example, in this survey, in most articles that took a supervised

learning approaches, patient labels were derived based on the occur-

rences of codes, such as diagnosis, procedure, and medication codes.

Other than manually crafting labels, transfer learning could offer al-

ternative approaches.

Transfer learning. Some articles attempt to label EHR data implic-

itly. For example,26 used LSTM to model sequences of diagnostic

codes, a proxy problem for disease progression, and showed that the

learned knowledge could be transferred to new datasets for the same

task. In111, an autoencoder variant architecture was applied to per-

form transfer learning from generic EHR to predict a specific target,

such as inferring prescriptions from diagnostic codes.

Interpretability

Although deep learning models can produce accurate predictions,

they are often treated as black-box models that lack interpretability

and transparency of their inner working.112 This is an important

problem because clinicians often are unwilling to accept machine

recommendations without clarity as to the underlying reasoning.

Recently, there have been some efforts to explain black-box deep

models.113 Below we list several approaches from the reviewed

articles to enhancing interpretability or transparency in EHR

modeling.

Attention mechanism. The attention-mechanism-based learning is a

recent trend20,41,42,45 for understanding what part of historical in-

formation weighs more in predicting disease onset or future events.

The original attention mechanism proposed in114 aims at improving
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the performance of neural machine translation. When introduced to

EHR modeling, attention weights indicate the degree to which clini-

cal events the model can predict disease onsets or future events.41,45

The attention mechanism is also used to derive a latent representa-

tion of medical codes (eg., diagnosis codes, medication codes).41

Knowledge injection via attention. Biomedical ontology is a major

source of biomedical knowledge that has been jointly modeled with

the attention mechanism to add interpretability and model robust-

ness. In42, this is achieved by learning the latent embedding of a clin-

ical code (eg., diagnosis code) as a convex combination of the

embeddings of the code itself and its ancestors on the ontology

graph.

Knowledge distillation. Knowledge distillation compresses the

knowledge learned from a complex model into a simpler model that

is much easier to deploy. The recent development of mimic learning/

knowledge distillation has provided a way of transferring informa-

tion from a complex model (eg., a deep neural network) to a simpler

model (eg., a decision tree). There are recent attempts to apply

mimic learning to the healthcare domain in order to enhance inter-

pretability of deep models via boosting trees.91,115 The main idea is

to use the complex model to generate more soft-labeled examples to

train a simpler model.

Evaluation of analytics tasks
For supervised models, evaluation was often done directly on the

learning task via quantitative metrics, such as accuracy and AUC.

For unsupervised models, evaluation was often indirectly done using

separate prediction tasks.29,30 Popular evaluation metrics for binary

prediction or classification include AUC, the area under the

precision-recall curve (PRAUC), and the F1 score. For multiclass

prediction or classification, micro-F1 and macro-F1 scores are popu-

lar choices. In addition, some also use mean squared error for per-

formance evaluation. Performance details are summarized in

Supplementary Table S1.

DISCUSSION

In this review, we provided an overview of the current deep learning

models for EHR data. Results from the reviewed articles have shown

that as compared to other machine learning approaches, deep learn-

ing models excel in modeling raw data, minimizing the need for pre-

processing and feature engineering, and significantly improving

performance in many analytical tasks. It is noteworthy that deep

learning models are ideal tools for recognizing diseases or predicting

clinical events or outcomes (eg., mortality or treatment response)

given time series data such as EEG or biosignals from ICU44,59,82 or

imaging data.3,4 However, although deep learning techniques have

shown promising results in performing many analytics tasks, several

open challenges remain.

First, despite various attempts, there is still a significant need to

improve the quality of generated data and labels. For data augmen-

tation, current challenges include: 1) generated data lack variety; 2)

data generation is often conducted under supervision, making the

generated data biased toward the prediction task; and 3) there is a

need for more accurate quantitative measures to evaluate the utility

and privacy preservation of the generated data. Challenges arise for

transfer learning of data and labels from the fact that deep models

often do not explicitly capture uncertainties. This makes the models

less robust in handling changes in underlying data distribution.

Thus, there is risk of deploying models in which the real EHR data

could invalidate the models’ future predictions. This could be a sig-

nificant risk, especially in the healthcare setting. General methods

have attempted to solve these challenges. These include better cali-

bration of uncertainties116 and adversarial learning with relaxing

the shared label space assumption.117 However, this is still an open

area for deep learning on EHR data.

Moreover, regarding the interpretability and transparency of the

model, current efforts (eg., attention mechanism, visualization, ex-

planation by examples) often attempt to explain the predictions.

However, to bring deep models built from EHR data into real use,

users often need to understand the mechanisms by which models op-

erate. Such a level of model transparency is still challenging to

achieve.

Last, for direct clinical impact, deployment and automation of

deep learning models must be considered. For instance, large

amounts of EHR data are processed to create standardized inputs to

train deep models. The difficulty of obtaining large EHR datasets

needs to be dealt with in order for deep EHR models to be integrated

into actual EHR systems.
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