Constructing Disease Network and Temporal Progression Model
via Context-Sensitive Hawkes Process

Edward Choi, Nan Du, Robert Chen, Le Song and Jimeng Sun
School of Computational Science and Engineering
Georgia Institute of Technology
Atlanta, USA
Email: {mp2893, dunan, rchen87}@gatech.edu, {lsong, jsun}@cc.gatech.edu

Abstract—Modeling disease relationships and temporal pro-
gression are two key problems in health analytics, which have
not been studied together due to data and technical challenges.
Thanks to the increasing adoption of Electronic Health Records
(EHR), rich patient information is being collected over time.
Using EHR data as input, we propose a multivariate context-
sensitive Hawkes process or cHawkes, which simultaneously infers
the disease relationship network and models temporal progression
of patients. Besides learning disease network and temporal pro-
gression model, cHawkes is able to predict when a specific patient
might have other related diseases in future given the patient
history, which in turn can have many potential applications in
predictive health analytics, public health policy development and
customized patient care. Extensive experiments on real EHR
data demonstrate that cHawkes not only can uncover meaningful
disease relations and model accurate temporal progression of
patients, but also has significantly better predictive performance
compared to several baseline models.
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Disease Relation; Disease Prediction; EHR;

I. INTRODUCTION

Applying automatic computational/statistical approaches to
medical fields has attracted much attention from the com-
munities of both academia and industry in the era of Big
Data [1]. Such popularity has been spurred by the introduction
of Electronic Health Records (EHR). EHR contains temporal
event sequences such as admission time, discharge time, sex,
ethnicity, age, weight, diagnoses, procedures, and medications.
Recently, there have been a number of studies that tried to
utilize such data [2]-[7] for different purposes, such as disease
progression modeling [7], phenotyping [3], [5] and mortality
modeling [6].

There are two key problems in health analytics that are
particularly challenging, namely,
o disease relation discovery: What are the temporal relation-

ships between diseases?
e temporal progression model: How do different diseases

progress over time for each individual patient?

In order to model temporal relations among diseases for
a diverse patient population, we propose context-sensitive
Hawkes Process model cHawkes. The classical Hawkes Pro-
cess [8], a point process to model a finite set of temporal
events, considers the relations between all past events and
the current event, namely, how past events will affect the
chance of the current event happening. In our setting, Hawkes
Process can capture the fact that a person who recently visited
a hospital for hypertension has a higher chance of having
heart failure than a person who has never suffered from
hypertension. However, the classical Hawkes Process does not
consider the context of each patient’s specific diagnosis. For

instance, in our setting, the relation between hypertension and
heart failure is applied to all people regardless of their physical
differences. This is far from being realistic, since a person’s
age, weight and many other factors might affect the chance of
having hypertension or heart failure. It is plausible to think that
heart failure is more likely to follow hypertension for an obese
person than an average person. Therefore, cHawkes identifies
disease relations and temporal progression while still capturing
the personal physical differences of patients using multivariate
context-sensitive Hawkes process.

The contributions of the paper include the following :

e We propose cHawkes, a context-sensitive Hawkes Process
to simultaneously model disease relationship network and
temporal progression using EHR data.

e cHawkes captures both global interacting relations among
diseases and how the characteristic of individual patients
affect the occurrence of diseases.

e cHawkes generates sparse and interpretable models through
regularization.

e We discover clinically meaningful disease relationship net-
work by applying cHawkes on real EHR datasets and
demonstrate accurate risk predictions for individual patients
using the proposed model.

The rest of the paper is organized as follows: After we
survey the related work in section II, we briefly review the
general Hawkes Process in section III. We then describe in
section IV, our proposed Context-Sensitive Hawkes Process
and parameter learning, including regularization. In section V,
we conduct extensive qualitative and quantitive evaluations on
a real-world dataset, MIMIC II. We conclude in section VI
with future research directions.

II. RELATED WORK
Disease Relationship Discovery Studies have been conducted
on disease relations discovery [9]-[11] through analyzing how
past diseases can affect the occurrence of current diseases.
Most of the studies, however, has limitations in dealing with
time dimension. Leiva-Murillo et al. [9] applied continuous-
time Hidden Markov Model (HMM) to capture disease rela-
tions. However, their model only captures the influence from
the most recent event, as they use a first-order HMM. Savova et
al. [10] used natural language processing algorithms to extract
temporal relations between disease occurrences. Their work,
however, uses free-text which cannot capture the exact duration
between the events. A recent study by Zhao et al. [11] tries to
learn the triggering kernels of the Hawkes Process in order to
study the disease relations, and also proposes a metric termed
‘Individual Physique’ to represent a person’s natural fitness.
The major difference to our work is that we utilize concrete



features of patients that change over time (e.g. weight, age)
rather than represent the natural fitness of a person as a single
constant value. Moreover, our method uncovers the general
latent disease network by appropriate regularizations, which
produces clinically meaningful sparse structures as verified in
the experiments.

Temporal Progression Model A number of recent studies
tried to model temporal aspect of patients and their dis-
eases [7], [12], [13]. Most of the studies, however, focus
on predicting the progression of a specific disease. Zhou et
al. [12] focuses on modeling the progression of Alzheimer’s
disease using biomarkers. Liu et al. [13] captured the func-
tional and structural degeneration in the glaucoma process
by using the 2-dimensional continuous-time Hidden Markov
Model. Wang et al. [7] proposed a more general approach
to model the progression of an arbitrary disease. They used
unsupervised learning to analyze the comorbidities of chronic
obstructive pulmonary disease (COPD) patients and predicts
the progression of COPD. Since they model the progression
of COPD through various stages along with its comorbidities,
the performance of their work depends on the prior knowledge
of the target disease and its comorbidities.

Network Diffusion Modeling Uncovering the relation be-
tween diseases shares similarities with network diffusion mod-
eling, which has been actively studied recently [14]-[19]. Just
as a patient experiencing multiple diseases forms a cascade,
a tweet being retweeted by Twitter users forms a cascade.
CONNIE [14] and NETINF [15] tried to infer the network
connectivity with fixed transmission rates. NETRATE [16]
and KernelCascade [17] employ a survival analysis approach
for learning probabilistic transmission rates. More recently,
MOoNET [18] and TopicCascade [19] respectively used the
features of nodes and the features of events to infer the trans-
mission rates. TopicCascade, although similar to cHawkes,
assumes the characteristics of events do not change over time.
This assumption does not apply to patient modeling, as patient
features do change over time. While there are similarities
between cHawkes and network diffusion models, there are
two big differences: 1. Network diffusion models are mainly
interested in uncovering the hidden network structure while
cHawkes performs disease relations, patient context, and risk
prediction. 2. The transmission process in network diffusion
models is influenced only by the most recent event. cHawkes,
on the other hand, tries to capture the relation between diseases
that did not occur consecutively.

ITI. HAWKES PROCESS

Hawkes Process is a type of point processes for modeling
temporal event sequences. The intuition behind Hawkes Pro-
cess is self-excitation, meaning that the past occurrences of
events make the future event more probable. More formally,
a general joint likelihood of observing a single sequence of
events T = {t1,... ,t,}(t; is the i-th occurrence of the event)
within the time window starting from ¢ = 0 and ending at
T > t,, can be given as follows:

T
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The conditional intensity function A(¢) in Equation 1
describes the behavior of a point process. For one-dimensional

Hawkes Process, its conditional intensity function is given by
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where p is the base intensity rate capturing the spontaneous
rate to generate new events, g(¢t — t;) is the triggering kernel
quantifying the influence of a past event on the occurrence
of the new event, and o measures the amount of influence
from past events on the current event. The limitation of one-
dimensional Hawkes Process is that it can only model a
single type of event. In our setting, we want to capture the
interacting processes of different event types (or diseases,
more specifically). This is when the multi-dimensional Hawkes
Process comes into play.

Multi-dimensional Hawkes Process models not only the self-
excitation of a single type of event but also captures the
mutual excitations among different types of events. Formally,
we denote 7 = {(¢;,d;)};_, an event sequence of time
t; associated with event type d;. The conditional intensity
function for each event type d is thus given by

Aa(t) = pq + Z adq,aq,9(t —t;) )
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where 14 is the base intensity rate of event type d, and ag 4,
is the strength of influence event type d; has over event type
d. Then the log-likelihood of observing 7 is the following :
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where D is the total number of diseases.

So far, at the first glance, the multi-dimensional Hawkes
Process seems able to model the inter-relations among dis-
eases. However, the direct application to our setting will
incur two major issues. First, the model is constructed for
each disease, which ignores the physical difference of the
patients. As a result, we cannot make any patient-specific
risk predictions. Second, because the number of unknown
parameters {adjydi}ij grows quadratically as the number of
diseases increases, even on moderate size of EHR data, the
model will incur huge computation cost and is often overfitted.

IV. CONTEXT-SENSITIVE HAWKES PROCESS
From EHR data, there are three modeling insights, namely,
1) patient’s context-sensitive disease risk, 2) the relationship
between various diseases as to how they influence the occur-
rence of one another, and 3) the temporal dynamics of diseases.
To capture these insights from EHR, we propose Context-
sensitive Hawkes Processes cHawkes.

A. Context-Sensitive Hawkes Process

We first denote by 7 = {(t, d, f;)}:; , the sequence of
clinical visits of patient i, where t§- is the time, d; the type of
disease, f; the physical features(e.g age, weight, etc) of patient
i at visit j. Each T is referred to as a cascade in the sense
that for patient ¢, his (or her) current disease might trigger
other related symptoms and diseases in the future. Overall
EHR data are modeled as a collection C of ii.d. cascades
{T1,... . TII}, one from each patient.

The general multi-dimensional Hawkes Process assumes
that the spontaneous intensity rate y4 and the mutual-excitation



rate aq ¢ are the same for all cascades. Since different patients
have different sets of physical features, such as age, weight and
height, it would be unrealistic to assume that the same u4 and
agq can be applied to all patients.

To incorporate such patient contexts, we introduce a feature
vector fj7 for patient ¢ at visit j, which can be parameterized
based on information available in EHR data. For example,
patient features can include discrete values such as ethnicity
and gender, as well as real values such as age and weight.
In our experiments, for simplicity all features are converted
to discrete values as can be seen from the age and weight in
Figure 2!. We now modify the conditional intensity function
for the dth disease given patient ¢ as follows.

Np(t) = pg Fi+ Z agqi gt — t5) C))
SN~ i~ ——
patient ty<t disease  temporal

context network dynamics

Note that what used to be \;(¢) in multi-dimensional Hawkes

Process is now A (t), which is a function of disease type d

given patient <. Essentially, we are learning intensity functions

for individual patients. As shown in Equation 4, the model
consists of the following three key components:

e Patient context: We formulate the spontaneous occurrence
strength 14 as a linear combination of patient-specific, time-
variant features f; As a result, the conditional intensity
function can now capture the heterogeneous evolving pro-
cess of each specific patient.

e Disease network: We learn mutual excitation {ad_jydi}
variables for any pair of diseases to construct the disease
relationship network. Although one might want to learn
a patient specific disease network, the reality is that the
available information from a single patient is often too
limited to reliably learn all the parameters. As a result, we
choose to learn a global disease relation network for all
patients.

e Temporal dynamics: The triggering kernel g(t) controls
the aspect of temporal dynamics of diseases. Without loss
of generality, in this work, we use the exponential decay
kernel g(t) = Ae™*, which is commonly used in many
fields for simplicity. 2

B. Parameter Estimation ,
By Equation 3, the log-likelihood /(7") of observing a
single cascade 7" € C for patient i is given by
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where ¢! 4 1s the last event on the dimension d. Then,
the joint logTr -likelihood of observing all the cascades C =
{Tl, .. C‘} is simply derived as
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'We also tried using real-valued features directly, with interpolation applied
between visits. But such an approach exhibited inferior performance.

2Rayleigh kernel was also tested, but yielded slightly a slightly inferior
performance

where A = {ad],d }d a4 is the D-by-D matrix and D is the

total number of diseases. A desirable characteristic of this log-
likelihood function is that it is concave in the arguments A and
{pa}, which will allow us to find the global maximum solution
efficiently using various convex optimization tools. Moreover,
we want to induce a sparse network structure from the diseases
and avoid overfitting. If the mutual excitation rates ag, 4, = 0,
then there is no edge (or direct transmission) from the disease
d; to d;. For this purpose, we impose L, type of regularization
on the parameters {ad d; } so that we can obtain a sparse
disease network structure. As a consequence, the sparse disease
network structure is reflected in the non-zero patterns of the
final matrix A. Similarly, we impose L, regularization on the
parameters {14} so that we can obtain robust estimates of the
parameters over patient features. Finally, we have the following
optimization problem:

D
. A
min {—e (CclAs {rad ) + Al Al + 5> wn%}
d=1

subject to A > 0, {Nd}fi)=1 =0 (5)
After we learned the network structure with the L, regu-
larization, we then refit the nonzero parameters {adj,di} to
achieve better estimations of those parameters without L
regularization.

V. EXPERIMENTS

A. Dataset

Our experiments used the Multiparameter Intelligent Mon-
itoring in Intensive Care II (MIMIC II) clinical database [20].
MIMIC 1I is a collection of de-identified clinical visit records
of Intensive Care Unit patients between 2001 and 2008 from
a single tertiary teaching hospital. At each visit, a patient
is diagnosed with the ICD-9 code system. A patient could
receive more than one diagnosis at a single visit, one of
which is assigned as the primary diagnosis. MIMIC II also
includes information regarding the patient such as gender,
birth date, weight, medication and various lab test results.
After preprocessing the data(extracting patients with at least
two hospital visits who had their weights checked at every
visit, grouping the 5-digit ICD9 codes to 3-digit ICD9 codes,
filtering out non-primary diagnoses), we are left with 593
patients, 186 disease types and total 1,269 visits. The features
we used, age and weight, are shown in the axes of Figure 2. We
tried to include more features such as blood pressure. However,
due to the sparse nature of EHR data, weight and age were
the most suitable candidates.

B. Hyper Parameter Setting

cHawkes uses three hyper parameters: Regularization pa-
rameters A1, A2 in Equation 5 and the exponential decay kernel
parameter \ in g(t) = Ae~**. For \; and A, we tested values
of 0, 10, 100 and 1000. For the exponential decay kernel
parameter we tested 0.2, 0.4, 0.6, 0.8, 1.0. After iterations
of rigorous experiments using a machine equipped with an
Intel Xeon E5-2630 (24 cores) and 132GB memory, we chose
A1 = A2 = 10 and 0.2 for the decay kernel parameter.
The criteria for choosing the optimal value was the model’s
predictive performance, which will be discussed in section V.D.
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Fig. 1.

Disease network of a 65kg, 25-year-old, built with cHawkes. Each node represents a type of disease, under which the number is its ICD9 code. The

size of each node represents the strength of its spontaneous occurrence(for a person of age 25, weight 65kg). Edges between the nodes represent the direction
of influence. Thicker edges mean stronger influence. Diseases that have no connection or very weak connections with other diseases were filtered out in the

generation process for succinct representation of information
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Fig. 2. Heat map of three different diseases: HIV, heart failure, complications from implants and grafts. The Y-axis corresponds to ages: < 10, [10, 20), [20,
40), [40, 60), [60, 80), and > 80. The X-axis consists of weights: <40kg, [40kg, 60kg), [60kg, 80kg), [80kg, 100kg), [100kg,120kg), and >120kg. The darker

regions represent stronger activity of the disease.

C. Disease Relation, Context Sensitivity and Temporal Dynam-
ics

In this section, we present the disease network to show
the relations between diseases, explain how change of con-
text(patient features) affects disease occurrence, and also show
how occurrence intensities of diseases change over time.

1) Disease Network: Figure 1 is the disease network con-
structed using cHawkes, specifically for a patient of age 25,
weight 65kg. The qualitative interpretation of the networks
was provided by a current medical student who also has
broad experience in medical data mining. The network was
confirmed to be clinically meaningful with connections that
represent possible real-world scenarios where certain diseases
may precede others. In Figure 1, we provided two specific
examples where relations between nodes are explained.

In Figure 1, subgraph A, the largest node corresponds to
acute myocardial infarction(AMI). The most influential edge
connects AMI to other forms of chronic ischemic heart disease,
which is a relationship that is commonly seen in real life.
Furthermore, AMI has an edge that points to itself. This is also
clinically significant because some patients may experience
successive episodes of re-infarction after the first MI event
[21]. The heart failure node connected to AMI represents the
fact that heart failure may follow MI in about 29% of patients
[22]. The acute pulmonary heart disease node is connected to

AMI, which is clinically meaningful, as cardiogenic pulmonary
edema can occur as a complication of systolic heart failure [23,
Chapter 11]. The diseases of the mitral and aortic values node
may represent complications of myocardial infarction such as
mitral valve prolapse [23, Chapter 11].

Another set of disease relations worth mentioning is shown
in Figure 1, subgraph B. The root of this subgraph, biliary
tract disease(BTD) is connected to ulcerative colitis. This
relationship is fundamentally important because there is a
known medical association between primary sclerosing cholan-
gitis(PCS), a type of biliary disease, and ulcerative colitis(UC)
[24]. BTD also points to occlusion of cerebral arteries. One
explanation for this is that both biliary disease and occlusion
of cerebral arteries (a possible result of thromboembolism)
may result due to side effects of oral contraceptives such as
drospirenone/ethinylestradiol [25] [23, Chapter 19]. Occlusion
of cerebral arteries points to certain adverse effects not
classified elsewhere. This particular node makes sense to be
linked to cerebral artery occlusion, because ischemic blood
loss that results from the occlusion may result in a number of
musculoskeletal, spatiovisual, or cognitive deficits.

2) Context-Sensitivity of Diseases: As we have optimized
p vectors of different disease, we can now plug in specific
age and weight to analyze how diseases behave under dif-
ferent contexts. Figure 2 is the heat map of three different
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Fig. 4. Disease intensities of two people with different physical features. We
can see that intensity trajectories differ for different patients even though the
diseases being plotted are the same.

diseases, Human immunodeficiency virus disease(042), Heart
failure(428) and complications from implants and grafts(996)
calculated using a range of values for ages and weights. The
heat maps are based on p variables of Equation (4).

It can be seen that diseases behave quite differently in
different contexts. For example, HIV disease acts especially
strongly for people between the age 20 and 40, which correctly
reflects reality®.This characteristic could be due to the fact
that younger people are more sexually active, rendering them
more susceptible to sexually transmitted diseases than older
people. Heart failure, on the other hand, is heavily affected by
a person’s weight. It is also correlated with higher age, but the
correlation is stronger with obesity. This is consistent with the
common knowledge that obese people are more susceptible to
heart diseases*. Complications from implants and grafts seem
to be ubiquitous to various groups of people except for patients
with a very light weight. This is equivalent to saying that this
disease can generally occur to anyone except for very young
children who weigh under 40kg. This makes sense as young
children are less likely to receive implants or grafts such as
cardiac devices or prosthetic joints.

3) Temporal Dynamics: Here we present two groups of
disease intensities, one for a young, average weight person(age
21, weight 67kg), and another for an old, overweight per-
son(age 71, 122kg). Each person suffers different sets of
diseases throughout 4 months as shown in Figure 3. The
former patient has suffered septicemia, other diseases of lung
and heart failure. The latter patient has suffered heart failure,
complications from implants and grafts and other forms of
chronic ischemic heart disease. Based on theses records, we
plotted the intensities of three well-known diseases for each

3http://www.cdc.gov/hiv/risk/age/olderamericans/
“http://www.cdc.gov/healthyweight/effects/

patient using Equation 4.

It can be seen from Figure 4 that the intensity of a disease
not only depends on the types of diseases the patient had and
how much time has passed after each disease, but also on
the physical features of the patient. For example, the intensity
of acute myocardial infarction(AMI) for the younger patient
maintains its default strength since the diseases he suffered
have little influence on AMI. The intensity of septicemia, on
the other hand, spikes after he suffers septicemia and lung
disease, as they both influence the occurrence of septicemia.
You can see, however, that after a period of time, the intensity
of septicemia drops down to its default strength. The intensity
of heart failure maintains very weak default strength except for
the two times the patient suffers lung disease and heart failure.
For the older patient, after being influenced by the initial
instance of heart disease, the heart failure intensity maintains
relatively high throughout the whole observation compared to
the younger patient. This is due to the difference of physical
features of the two patients. A higher heart failure intensity for
the older, overweight patient is consistent with what we have
presented in section V.C.2, where we have shown that heart
failure acts more strongly when combined with obesity.

D. Disease Prediction

Next we provide quantitative evaluation of cHawkes by
performing disease risk prediction. Given a disease history
of a patient, we try to predict the most likely disease he/she
will have in a certain future time window by calculating the
conditional cumulative distribution of each disease.

Figure 5 is the result of 10-fold cross validation of risk
prediction by various methods including Hawkes Process
and other well-known methods. We tried predicting diseases
that occurred in four different three months windows, while
varying the number of predictions p. If one of p predic-
tions is correct, we consider it an accurate prediction. For
cHawkes and Hawkes Process, we choose p diseases with
the highest conditional cumulative probability. We also tested
homogeneous Poisson Process which is equivalent to removing
the o variables from the intensity function (2) of Hawkes
Process. For Poisson Process, we also used conditional cu-
mulative probability for prediction. Linear regression models
were trained to predict the time of the next occurrence of the
disease, given all past diseases and the most recent age, weight
information. We picked all diseases that occurred in the target
time window. The average number of the selected diseases for
the different time windows are 48, 14, 11 and 11. We put
a single dot for linear regression, as a type of baseline. For
multinomial logistic regression, we used the same features as
linear regression. Again, p diseases with the highest probability
were chosen. Although logistic regression cannot be directly
compared with other temporal models, we plot its performance
in the first figure so that it can serve as a reference.

It is readily visible from Figure 5, that cHawkes outper-
forms other well-known methods except for the first three
month window. In that particular window, cHawkes was
having trouble correctly predicting diseases concerned with
newborn infants, especially Other and ill-defined conditions
originating in the perinatal period(779). cHawkes, however,
was predicting Disorders relating to short gestation and low
birthweight(765) instead, which is very similar to 779. In all
other situations, cHawkes exhibits superior performance. Also
it is worth noting that cHawkes is particularly robust in making
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a longer prediction, which can be attributed to its taking into
consideration patient feature.

VI. CONCLUSIONS

In this paper we proposed cHawkes to capture the three
aspects of EHR, namely disease relations, context-sensitivity
of diseases and temporal dynamics of diseases. We showed
a detailed derivation of the model. In the experiments, we
applied cHawkes to MIMIC 11, a real-world EHR comprised
of ICU patients, to build disease networks, context-sensitive
heat maps and show temporal dynamics of disease intensities.
Risk predictions were performed for quantitative evaluation,
which showed that cHawkes is able to predict future diseases
more accurately than the original Hawkes Process and other
traditional methods.

In the future, we plan to apply cHawkes to several EHR
datasets of varying patient demographics and diverse sets of
diagnoses. Such application will uncover different sets of
meaningful disease relations. We also plan to use a larger
dataset with numerous patient features, so that we can identify
useful relations between various patient features and the risk
of disease occurrence.
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