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Abstract—Modeling disease relationships and temporal pro-
gression are two key problems in health analytics, which have
not been studied together due to data and technical challenges.
Thanks to the increasing adoption of Electronic Health Records
(EHR), rich patient information is being collected over time.
Using EHR data as input, we propose a multivariate context-
sensitive Hawkes process or cHawk, which simultaneously infers
the disease relationship network and models temporal progression
of patients. Besides learning disease network and temporal
progression model, cHawk is able to predict when a specific patient
might have other related diseases in future given the patient
history, which in turn can have many potential applications in
predictive health analytics, public health policy development and
customized patient care. Extensive experiments on real EHR data
demonstrate that cHawk not only can uncover meaningful disease
relations and model accurate temporal progression of patients,
but also has significantly better predictive performance compared
to several baseline models. Scalability aspect is addressed with
optimization techniques that can speed up the optimization
process by more than three orders of magnitude.

I. INTRODUCTION

Applying automatic computational/statistical approaches to
medical fields has attracted much attention from the com-
munities of both academia and industry in the era of Big
Data [1]. Such popularity has been spurred by the introduction
of Electronic Health Records (EHR). EHR contains temporal
event sequences such as admission time, discharge time, sex,
ethnicity, age, weight, diagnoses, procedures, and medications.
Recently, there have been a number of studies that tried to
utilize such data [2]–[7] for different purposes, such as disease
progression modeling [7], phenotyping [3], [5] and mortality
modeling [6].

There are two key problems in health analytics that are
particularly challenging, namely,

• disease relation discovery: What are the temporal relation-
ships between diseases?
• temporal progression model: How do different diseases

progress over time for each individual patient?

In order to model temporal relations among diseases for
a diverse patient population, we propose context-sensitive
Hawkes Process model cHawk. The classical Hawkes Pro-
cess [8], a point process to model a finite set of temporal
events, considers the relations between all past events and

the current event, namely, how past events will affect the
chance of the current event happening. In our setting, Hawkes
Process can capture the fact that a person who recently visited
a hospital for hypertension has a higher chance of having
heart failure than a person who has never suffered from
hypertension. However, the classical Hawkes Process does not
consider the context of each patient’s specific diagnosis. For
instance, in our setting, the relation between hypertension and
heart failure is applied to all people regardless of their physical
differences. This is far from being realistic, since a person’s
age, weight and many other factors might affect the chance of
having hypertension or heart failure. It is plausible to think that
heart failure is more likely to follow hypertension for an obese
person than an average person. Therefore, cHawk identifies
disease relations and temporal progression while still capturing
the personal physical differences of patients using multivariate
context-sensitive Hawkes process.

The contributions of the paper include the following :

• We propose cHawk, a context-sensitive Hawkes Process
to simultaneously model disease relationship network and
temporal progression using EHR data.
• cHawk captures both global interacting relations among

diseases and how the characteristic of individual patients
affect the occurrence of diseases.
• cHawk generates sparse and interpretable models through

regularization.
• We discover clinically meaningful disease relationship net-

work by applying cHawk on real EHR datasets and demon-
strate accurate risk predictions for individual patients using
the proposed model.
• We propose various optimization techniques that improve

the training speed of Hawkes Process by more than three
orders of magnitude.

The rest of the paper is organized as follows: After we sur-
vey the related work in section II, we briefly review the general
Hawkes Process in section III. We then describe in section IV,
our proposed Context-Sensitive Hawkes Process and parameter
learning, including regularization and optimization techniques.
In section V, we conduct extensive qualitative and quantitive
evaluations on a real-world dataset, MIMIC II. We conclude
in section VI with future research directions.



II. RELATED WORK

Disease Relationship Discovery Studies have been conducted
on disease relations discovery [9]–[12] through analyzing how
past diseases can affect the occurrence of current diseases.
Most of the studies, however, has limitations in dealing with
time dimension. Beck and Pauker [9] used Markov Decision
Process to model medical prognosis, but they assume time to
be discrete instead of continuous as stored in EHR. Leiva-
Murillo et al. [10] applied continuous-time Hidden Markov
Model (HMM) to capture disease relations. However, besides
computational expensive modeling since their continuous-time
HMM is a first-order model, their model only capture the
influence from recent events. Savova et al. [11] used natural
language processing algorithms to extract temporal relations
between disease occurrences. Their work, however, uses free-
text which cannot capture the exact duration between the
events. A recent study by Zhao et al. [12] tries to learn the
triggering kernels of the Hawkes Process in order to study the
disease relations, and also proposes a metric termed ‘Individual
Physique’ to represent a person’s natural fitness. The major
difference to our work is that we utilize concrete features of
patients that change over time (e.g. weight, age) rather than
represent the natural fitness of a person as a single constant
value. This will facilitate personalized medical care for patients
by simply using their physical information. Moreover, our
method uncovers the general latent disease network by ap-
propriate regularizations, which produces clinically meaningful
sparse structures as verified in the experiments.

Temporal Progression Model A number of recent studies
tried to model temporal aspect of patients and their diseases
[7], [13]–[16]. Most of the studies, however, focus on predict-
ing the progression of a specific disease. Tangri et al. [13] uses
Cox proportional hazards regression methods to predict the
progression stage of chronic kidney disease to kidney failure.
Ito et al. [15] and Zhou et al. [14] focuses on modeling
the progression of Alzheimer’s disease, respectively using
meta-analysis and biomarkers. Liu et al. [16] captured the
functional and structural degeneration in the glaucoma process
by using the 2-dimensional continuous-time Hidden Markov
Model. Wang et al. [7] proposed a more general approach
to model the progression of an arbitrary disease. They used
unsupervised learning to analyze the comorbidities of chronic
obstructive pulmonary disease (COPD) patients and predicts
the progression of COPD. Since they model the progression
of COPD through various stages along with its comorbidities,
the performance of their work depends on the prior knowledge
the target disease and its comorbidities.

Point Process Hawkes Process, which is the basis of our
proposed method, has been attracting increased attention from
sociology, and social media and network analysis. For instance,
Alexey et al. [17], Mohler [18], Porter and White [19] and
Zammit-Mangion [20] apply Hawkes Process to model the
behaviors and conflicts among gangs and even to detect
terrorist attacks; Halpin and Boeck [21], and Masuda et al. [22]
use Hawkes Process to capture the interactions within e-mail
networks and daily conversations; Hassen and Sharda [23], and
Yang and Zha [24] construct different and mixture Hawkes
Process to study the information diffusion patterns; More
recently, Xu et al. [25] try to predict the online advertisement
conversion rate by using mutual-exciting Hawkes Process,

and Farajtabar et al. [26] even propose to formulate the
user engagement promotion as a social activity maximization
problem based on multivariate Hawkes Process. Although there
were many applications of Hawkes Process, however, they
essentially were not designed for learning networks such as
disease relations.

Network Diffusion Modeling Uncovering the relation be-
tween diseases shares similarities with network diffusion mod-
eling, which has been actively studied recently [27]–[32]. Just
as a patient experiencing multiple diseases forms a cascade,
a tweet being retweeted by Twitter users forms a cascade.
CONNIE [27] and NETINF [28] respectively use convex pro-
gramming and submodular optimization to infer the network
connectivity with fixed transmission rates. NETRATE [29]
and KernelCascade [30] employ a survival analysis approach
for learning probabilistic transmission rates. More recently,
MoNET [31] and TopicCascade [32] respectively used the
features of nodes and the features of events to infer the
transmission rates. TopicCascade is similar to cHawk in that it
assumes the topic of a meme affects its diffusion process in a
network, similar to the patient characteristic affecting his/her
infection likelihood. It also assumes, however, that the topic
of a meme does not change over time. This assumption does
not apply to patient modeling, as patient features do change
over time. While there are certain similarities between cHawk
and network diffusion models, there are two big differences: 1.
Network diffusion models are mainly interested in uncovering
the hidden network structure while cHawk performs disease
relations, patient context, and risk prediction. 2. The transmis-
sion process in network diffusion models is influenced only by
the most recent event. While this is a valid assumption in most
network diffusion processes(e.g. a user retweeting a tweet,
usually do not care how the tweet was previously retweeted to
have reached him), diseases work very differently. A patient’s
disease could easily be related to another disease he had before
the most recent disease, which is captured by cHawk.

III. HAWKES PROCESS

Hawkes Process is one type of point processes for model-
ing temporal event sequences such as diagnosis events of a
patient in EHR. The intuition behind Hawkes Process is self-
excitation, meaning that the past occurrences of events make
the future event more probable. More formally, given an ob-
servation window of event sequence T := {t1, . . . , tn} where
ti is the i-th occurrence of the event, the event occurrence time
can be modeled as a continuous random variable X . We denote
the conditional density of the next event time ti given all the
past events Hti as f(ti|Hti) := f(ti|t1, . . . , ti−1). Given that
no events have happened since the last event up to time t, the
probability that a new event will occur just within the short
interval [t, t+ dτ) is given by

Pr (X ∈ [t, t+ dτ)|X > t,Ht) =
f(t|Ht)dτ
S(t|Ht)

= λ(t|Ht)dτ,

where λ(t|Ht) is the intensity function of the process indicat-
ing the risk that an event will occur at time t, and S(t|Ht) =
1−F (t|Ht) = exp

(
−
∫ t
0
λ(τ |Hτ )dτ

)
is the survival function

showing the probability that no events happen up to time t.
For the ease of notation, we will denote f(t) := f(t|Ht),
λ(t) := λ(t|Ht) and S(t) := S(t|Ht), which implicitly
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Fig. 1. From left to right, Disease risks, Disease relations, Temporal dynamics: The left figure depicts the different levels of risks of two patients being afflicted
by the same set of diseases: diabetes, kidney failure and heart failure. The middle figure depicts the latent relations among diseases. The last figure shows how
the strength of a disease can change over time differently for each individual.

assume the dependency of the history Ht. Hawkes Process
has the following relations between f(t), λ(t) and S(t):

f(t) = λ(t) exp

(
−
∫ t

0

λ(τ)dτ

)
λ(t) = − d

dt
logS(t)

and we assume S(0) = 1.

By the chain rule, the joint likelihood of observing a single
sequence of events T = {t1, . . . , tn} within the time window
starting from t = 0 and ending at T ≥ tn, can be given as
follows:

L(T ) =
∏
ti∈T

λ(ti) · exp

(
−
∫ T

0

λ(τ)dτ

)
, (1)

From the joint likelihood of Equation 1, we can see that
a general temporal point process can be uniquely determined
by its conditional intensity function λ(t). For one-dimensional
Hawkes Process, its conditional intensity function is given by

λ(t) = µ+ α
∑
ti<t

g(t− ti),

where µ is the base intensity rate capturing the spontaneous
rate to generate new events, g(t − ti) is the triggering kernel
quantifying the influence of a past event on the occurrence of
the new event as a function of the duration between the past
and current time, and α measures the amount of influence from
past events on the current event. One dimensional Hawkes
Process is also called a self-exciting process. The larger the
value of α, the more influence past events will have on
the current event. The limitation of one-dimensional Hawkes
Process is that it can only model a single type of event. In
our setting, we want to capture the interacting processes of
different event types (or diseases, more specifically). This is
when the multi-dimensional Hawkes Process comes into play.

Multi-dimensional Hawkes Process models not only the self-
excitation of a single type of event but also captures the
mutual excitations among different types of events. Formally,
we denote T = {(ti, di)}ni=1 an event sequence of time
ti associated with event type di. The conditional intensity
function for each event type d is thus given by

λd(t) = µd +
∑
ti<t

αd,dig(t− ti) (2)

TABLE I. POPULAR DISEASES OF TWO PATIENT GROUPS

Age 20-40, Weight 60-80kg
HIV disease
Fracture of vertebral column with spinal cord injury
Chronic liver disease and cirrhosis
Poisoning by psychotropic agents
Septicemia
Age 60-80, Weight 100-150kg
Acute myocardial infarction
Septicemia
Other forms of chronic ischemic heart disease
Cardiac dysrhythmias
Diseases of pancreas

where µd is the base intensity rate of event type d, and αd,di
is the strength of influence event type di has over event type
d. Then the log-likelihood of observing T is the following :

`(T ) =
D∑
d=1

 ∑
(ti,di=d)∈T

log λd(ti)−
∫ T

0

λd(τ)dτ

 , (3)

where D is the total number of diseases.

So far, at the first glance, the multi-dimensional Hawkes
Process seems able to model the inter-relations among dis-
eases. However, the direct application to our setting will
incur two major issues. First, the model is constructed for
each disease, which ignores the physical difference of the
patients. As a result, we cannot make any patient-specific
risk predictions. Second, because the number of unknown
parameters

{
αdj ,di

}
i,j

grows quadratically as the number of
diseases increases, even on moderate size of EHR data, the
model will incur huge computation cost and is often overfitted.

IV. CONTEXT-SENSITIVE HAWKES PROCESS

From EHR data, there are three modeling insights, namely,
1) patient’s context-sensitive disease risk, 2) the relationship
between various diseases as to how they influence the oc-
currence of one another, and 3) the temporal dynamics of
diseases. Figure 1 illustrates the three insights in details. To
capture these insights from EHR, we propose Context-sensitive
Hawkes Processes cHawk.

A. Context-Sensitive Hawkes Process

We first denote by T i =
{
(tij , d

i
j ,f

i
j)
}n
i=1

the sequence of
clinical visiting events of patient i, where tij is the time of visit
j of patient i, dij is the type of disease of patient i at visit j,
and f ij is the associated set of physical features of patient i at



visit j, such as age, height, weight, blood pressure, etc. Each
T i is referred to as a cascade in the sense that for patient i, his
(or her) current disease might trigger other related symptoms
and diseases in the future. Overall EHR data are modeled as a
collection C of i.i.d. cascades

{
T 1, . . . , T |C|

}
, one from each

patient.

The general multi-dimensional Hawkes Process assumes
that the spontaneous intensity rate µd and the mutual-excitation
rate αd,d′ are the same for all cascades. Since different patients
have different sets of physical features, such as age, weight and
height, it would be unrealistic to assume that the same µd and
αdd′ can be applied to all patients. To illustrate the patient
heterogeneities, Table I lists popular diseases among two
different groups of patients in the MIMIC II dataset (a publicly
available EHR dataset that we used in our experiments). It
can be clearly seen that physical differences between young,
average weight patients and old, overweight patients do play
a role in the chance of disease occurrences.

To incorporate such patient contexts, we introduce a feature
vector f ij for patient i at visit j, which can be parameterized
differently based on what information are available in EHR
data. For example, patient features can include discrete values
such as ethnicity and gender, as well as real values such as
age and weight. In our experiments, for simplicity all features
are converted to binary values. In particular, real value such
as weight are mapped to 6 binary variables indicating from
very low to very high, as can be seen from Figure 31. We now
modify the conditional intensity function for the dth disease
given patient i as follows.

λid(t) = µ
>
d f

i
j︸ ︷︷ ︸

patient
context

+
∑
tij<t

αd,dij︸ ︷︷ ︸
disease
network

g(t− tij)︸ ︷︷ ︸
temporal
dynamics

(4)

Note that what used to be λd(t) in multi-dimensional Hawkes
Process is now λid(t), which is the conditional intensity func-
tion of disease type d given patient i. Essentially, we are
learning intensity functions for individual patients. As shown
in Equation 4, the model consists of the following three key
components:

• Patient context: We formulate the spontaneous occurrence
strength µd as a linear combination of patient-specific, time-
variant features f ij . As a result, the conditional intensity
function of each disease can now be adaptable to different
patients, so that we can capture the heterogeneous evolving
process with respect to each specific patient.

• Disease network: We will learn mutual excitation
{
αdj ,di

}
variables for any pair of diseases to construct the disease
relationship network. Although one might want to learn
a patient specific disease network, the reality is that the
available information from a single patient is often too
limited to reliably learn all the parameters. As a result, we
choose to learn a global disease relation network for all
patients.

• Temporal dynamics: The triggering kernel g(t) controls
the aspect of temporal dynamics of diseases. Without loss of
generality, in this work, we use the exponential decay kernel
g(t) = λe−λt, which is commonly used in many fields

1We also tried using real-valued features directly, with interpolation applied
between visits. But such an approach exhibited inferior performance.

for simplicity. We have also experimented with Rayleigh
kernel, another widely used decay kernel. But such approach
yielded a slightly inferior performance. Another option is to
use nonparametric density kernels, which is more suitable
for a larger dataset. We plan to explore this option in the
future when dealing with a bigger dataset.

B. Parameter Estimation

By Equation 3, the log-likelihood `(T i) of observing a
single cascade T i ∈ C for patient i is given by

`(T i) =
D∑
d=1

{ ∑
(tij ,d

i
j=d,f

i
j )∈T i

(
log λid(t

i
j)−

∫ tij

tij−1

λid(τ)dτ

)

−
∫ T

tin,d

λid(τ)dτ

}
,

where tin,d is the last event on the dimension d. Then,
the joint log-likelihood of observing all the cascades C ={
T 1, . . . , T |C|

}
is simply derived as

`(C|A; {µd}Dd=1) =
∑
T i∈C

`(T i),

where A =
{
αdj ,di

}
di,dj

is the D-by-D matrix and D is the
total number of diseases. A desirable characteristic of this log-
likelihood function is that it is concave in the arguments A and
{µd}, which will allow us to find the global maximum solution
efficiently using various convex optimization tools. Moreover,
we want to induce a sparse network structure from the diseases
and avoid overfitting. If the mutual excitation rates αdj ,di = 0,
then there is no edge (or direct transmission) from the disease
di to dj . For this purpose, we impose L1 type of regularization
on the parameters

{
αdj ,di

}
so that we can obtain a sparse

disease network structure. As a consequence, the sparse disease
network structure is reflected in the non-zero patterns of the
final matrix A. Similarly, we impose L2 regularization on the
parameters {µd} so that we can obtain robust estimates of the
parameters over patient features. Finally, we have the following
optimization problem:

min

{
−`
(
C|A; {µd}Dd=1

)
+ λ1‖A‖1 +

λ2
2

D∑
d=1

‖µd‖22

}
subject to A > 0, {µd}Dd=1 > 0 (5)

After we learned the network structure with the L1 regu-
larization, we then refit the nonzero parameters

{
αdj ,di

}
to

achieve better estimations of those parameters without L1

regularization.

C. Optimization

Although the optimization problem of Equation 5 has
simple non-negativity constraints, all the parameters of A are
tangled together, which makes the direct optimization ineffi-
cient. By carefully investigating the structure of Equation 5,
we can observe that the negative log-likelihood is readily
separable for each dimension (or disease) d. Therefore, we
can decompose the original optimization of Equation 5 into D
independent convex optimization subproblems where D is the



total number of diseases. Then, given a particular disease d,
the objective function Equation 5 can be evaluated as

−
∑
T i∈C

{ ∑
(tij ,d

i
j=d,f

i
j )∈T i

(
log
(
λid(t

i
j)
)
−
∫ tij

tij−1

λid(τ)dτ

)

−
∫ T

tin,d

λid(τ)dτ

}
+ λ1‖Ad:‖1 +

λ2
2
‖µd‖22. (6)

where tin,d is the last occurrence time of disease type d in ith
cascade. The respective gradients of `(C|Ad:;µd) with respect
to αd,dk and µd can be derived as

∂`(C|Ad:;µd)

∂αd,dk
= −

∑
T i∈C

{ ∑
(tij ,d

i
j=d,f

i
j )∈T i

(∑
tik<t

i
j
g(tij − tik)

λid(t
i
j)

−G(T − tij)
)}

+ λ1.

∂`(C|Ad:;µd)

∂µd
= −

∑
T i∈C

{ ∑
(tij ,d

i
j=d,f

i
j )∈T i

( f ij
λid(t

i
j)

− µ>d f ij(tij − tij−1)
)
− µ>d f in,d(T − tin,d)

}
+ λ2µd. (7)

where G(t) = 1 − e−λt is the integral of the decay kernel
g(t). Therefore, we can optimize all these independent convex
subproblems associated with each dimension d in parallel with
projected gradient descent (PGD) (or more advanced projected-
quasi-newton method).

D. Speed-up

In addition to decomposing Equation 5, we also used
OpenMP2 to utilize the power of our multi-core processor.
The log-likelihood of Equation 6 can be separately calculated
for each patient, and the gradient for each dimension can also
be also calculated in a parallel fashion.

For additional speed-up, we profiled the optimization pro-
cess to find the bottleneck. Over 95% of the time was spent
calculating the intensity functions Equation 4 in the likelihood
function Equation 6 and the gradient function Equation 7. It is
worth noting that, at each optimization step, the values of the
intensity functions in the likelihood function and the gradient
function are the same. This led us to calculate the intensity
functions once and share the results. We also linearized the
iterative structure of the intensity function. As can be seen from
Equation 4, all past events need to be processed. However, by
unfolding the iteration and summing the decay kernel values
of the same α variable, we can express the intensity function
as follows:

λid(t) = µ
>
d f

i
j +

∑
dt∈Dt

αd,dtg(·)

where Dt is the set of all distinct diseases that occurred
before t that influence disease d, and g(·) is the corresponding
aggregate decay kernel3. Then we calculate the coefficients

2http://openmp.org
3For example, even if a patient made multiple clinical visits for the same

disease, Dt would still have only one element.

Algorithm 1: Learning cHawk Model
1 for d = 1 to D in Parallel do
2 Initialize Ad: and µd randomly;
3 Pre-calculate the decay kernel and the integral*;
4 repeat
5 Pre-calculate all intensity functions*;
6 Project Ad: onto Ad: > 0 and µd > 0;
7 Evaluate the gradients* (Eq.7);
8 Update Ad: and µd using the gradients;
9 Evaluate the objective function* (Eq.6);

10 until Change in the objective function < ε;
11 end

g(·) at the beginning of the optimization and reuse them, as
their values do not change during the optimization process.
This significantly improves the optimization speed because a
typical patient experiences limited kinds of diseases even if
he/she makes many clinical visits. This strategy becomes more
effective as the number of events in a cascade increases. The
same strategy is also applied to the integral decay kernels in
the likelihood function and the α gradient function. This pre-
calculation requires on average 15 times additional memory
space, but reduces the optimization time by an order of
magnitude as will be shown in section V.E. Algorithm 1
summarizes the key steps. * indicates that OpenMP was used
to parallelize the calculations.

V. EXPERIMENTS

A. Dataset

Our experiments used the Multiparameter Intelligent Mon-
itoring in Intensive Care II (MIMIC II) clinical database [33].
MIMIC II is a collection of de-identified clinical visit records
of Intensive Care Unit patients between 2001 and 2008 from a
single tertiary teaching hospital. Although private information
of the patients such as birth dates are de-identified, the duration
between each patient’s birth and his/her clinical visits are
preserved, so that we can apply point processing algorithms.
At each visit, a patient is diagnosed with the ICD-9 code
system. A patient could receive more than one diagnosis at a
single visit, one of which is assigned as the primary diagnosis.
MIMIC II also includes information regarding the patient such
as gender, birth date, weight, medication and various lab test
results.

We construct the appropriate patient cohort for our ex-
periments. We first filter out patients who have visited the
hospital less than two times. As we are interested in how
diseases affect one another over time, we need patients who
have visited the hospital at least twice. Then we converted
5-digit ICD9 code to 3-digit ICD9 code. A typical ICD9
code consists of three primary digits and two supplementary
digits (e.g. 493.01 is extrinsic asthma with status asthmaticus,
while 493 is asthma). Such conversion reduces the number of
dimensions from 14,000 to 1,000, yet still captures reasonably
detailed diagnostic information. We further filter out non-
primary diagnoses at each visit. Even though a patient is
given multiple diagnoses at the visit, there must be a sequence
in which those diseases occurred. EHR, however fails to
capture that information, which makes it improbable in the
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Fig. 2. Disease network of a 65kg, 25-year-old, built with cHawk. Each node represents a type of disease, under which the number is its ICD9 code. The
size of each node represents the strength of its spontaneous occurrence(for a person of age 25, weight 65kg). Edges between the nodes represent the direction
of influence. Thicker edges mean stronger influence. Diseases that have no connection or very weak connections with other diseases were filtered out in the
generation process for succinct representation of information

perspective of point processes. We plan to address this issue
of simultaneous diagnoses in the future. Finally, we only take
the patients who had their weight checked on every visit, so
that we can apply cHawk. Weight was chosen among other
features because it is known to affect many diseases and is the
least sparse physical feature in MIMIC II. Finally we are left
with 593 patients, 186 disease types and total 1,269 visits. We
chose weeks as the unit of time for convenience, and all 593
cascades are normalized so that the first clinical visit occurs
at time t = 0. The observation length T for each cascade is
set to the time of the last event tn. The features we used, age
and weight, are shown in the axes of Figure 3. We tried to
include more features such as blood pressure. However, due
to the sparse nature of EHR data, weight and age were the
most suitable candidates.

B. Hyper Parameter Setting

cHawk uses three hyper parameters: Regularization param-
eters λ1, λ2 in Equation 5 and the exponential decay kernel
parameter λ in g(t) = λe−λt. For λ1 and λ2 we tested values
of 0, 10, 100 and 1000. For the exponential decay kernel
parameter we tested 0.2, 0.4, 0.6, 0.8, 1.0. After iterations
of rigorous experiments using a machine equipped with an
Intel Xeon E5-2630 (24 cores) and 132GB memory, we chose
λ1 = λ2 = 10 and 0.2 for the decay kernel parameter.
The criteria for choosing the optimal value was the model’s
predictive performance, which will be discussed in section V.D.

C. Disease Relation, Context Sensitivity and Temporal Dynam-
ics

In this section, we present the disease network to show
the relations between diseases, explain how change of con-
text(patient features) affects disease occurrence, and also show
how occurrence intensities of diseases change over time.

1) Disease Network: Figure 2 is the disease network con-
structed using cHawk, specifically for a patient of age 25,
weight 65kg. The qualitative interpretation of the networks
was provided by a current medical student who also has
broad experience in medical data mining. The network was
confirmed to be clinically meaningful with connections that
represent possible real-world scenarios where certain diseases
may precede others. In Figure 2, we provided two specific
examples where relations between nodes are explained.

In Figure 2, subgraph A, the largest node (410) corresponds
to acute myocardial infarction. Most of the nodes that this one
leads to are considered possible events that may sequentially
happen after a real-life acute myocardial infarction event. The
edge with the largest influence connects acute myocardial
infarction to other forms of chronic ischemic heart disease,
which is a relationship that is commonly seen in real life.
Furthermore, the node for acute myocardial infarction has an
edge that points to itself. This is also clinically significant
because some patients may experience successive episodes
of re-infarction after the first myocardial infarction event
[34]. The heart failure node connected to acute myocardial
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Fig. 3. Heat map of three different diseases: HIV, heart failure, complications from implants and grafts. The Y-axis corresponds to ages: < 10, [10, 20), [20,
40), [40, 60), [60, 80), and > 80. The X-axis consists of weights: <40kg, [40kg, 60kg), [60kg, 80kg), [80kg, 100kg), [100kg,120kg), and >120kg. The darker
regions represent stronger activity of the disease.

infarction represents the fact that heart failure may follow
myocardial infarction in about 29% of patients [35]. The
acute pulmonary heart disease node is connected to the acute
myocardial infarction node, which is clinically meaningful,
as cardiogenic pulmonary edema can occur as a complication
of systolic heart failure, due to pulmonary capillary pressure
increases caused by an impaired ability of the left ventricle
to pump blood to systemic circulation [36, Chapter 11]. The
diseases of the mitral and aortic values node may represent
complications of myocardial infarction such as mitral valve
prolapse [36, Chapter 11]. While the separate nodes connected
to acute myocardial infarction are all clinically meaningful,
they all collectively represent an important, interconnected
network that effectively captures the highly complex nature
of patients in severe cardiovascular condition.

Another set of disease relations worth mentioning is shown
in Figure 2, subgraph B. The root of this subgraph is biliary
tract disease. One node that connects from this node is ulcera-
tive colitis. This relationship is a fundamentally important one
because there is a known medical association between primary
sclerosing cholangitis (which is a type of biliary disease) and
ulcerative colitis [37]. About 80% of patients with primary
sclerosing cholangitis (PSC) have inflammatory bowel disease
including ulcerative colitis (UC). There is vast evidence in the
medical literature for shared etiology for PSC and UC. Most
notably, genetic markers in the HLA class II genes confer
confer risk to both diseases [38]. The biliary disease node
also points to occlusion of cerebral arteries. One explanation
for this is that both biliary disease (such as gallstones or
cholangitis) and occlusion of cerebral arteries (a possible
result of thromboembolism) may result due to side effects of
oral contraceptives such as drospirenone/ethinylestradiol [39],
[40] [36, Chapter 19]. The node for occlusion of cerebral
arteries points to the node certain adverse effects not classified
elsewhere. This is an umbrella term that could refer to a
number of adverse effects such as side effects of diseases.
This particular node makes sense to be linked to cerebral
artery occlusion, because ischemic blood loss that results from
the occlusion may result in a number of musculoskeletal,
spatiovisual, or cognitive deficits.

2) Context-Sensitivity of Diseases: As we have optimized
µ vectors of different disease, we can now plug in specific
age and weight to analyze how diseases behave under dif-
ferent contexts. Figure 3 is the heat map of three different
diseases, Human immunodeficiency virus disease(042), Heart
failure(428) and complications from implants and grafts(996)
calculated using a range of values for ages and weights. The
heat maps are based on µ variables of Equation (4).

It can be seen that diseases behave quite differently in
different contexts. For example, HIV disease acts especially
strongly for people between the age of 20 and 40, which in fact
correctly reflects reality4.This characteristic could be due to the
fact that younger people are more sexually active, rendering
them more susceptible to sexually transmitted diseases than
older people. It is interesting that people who have average
weight are more vulnerable to HIV disease. This could be
interpreted that people who are physically healthy are more
likely to be exposed to sexual activity than people who are
not. Heart failure, on the other hand, is heavily affected by a
person’s weight. It is also correlated with higher age, but the
correlation is stronger with obesity. This is consistent with the
common knowledge that obese people are more susceptible to
heart diseases5. Complications from implants and grafts seem
to be ubiquitous to various groups of people except for patients
with a very light weight. This is equivalent to saying that this
disease can generally occur to anyone except for very young
children who weigh under 40kg. This makes sense as young
children are less likely to receive implants or grafts such as
cardiac devices, vascular devices, prosthetic joints or organ
transplants.

3) Temporal Dynamics: Here we present two groups of
disease intensities, one for a young, average weight person(age
21, weight 67kg), and another for an old, overweight per-
son(age 71, 122kg). Each person suffers different sets of
diseases throughout 4 months as shown in Figure 4. The
younger, average weight patient has suffered septicemia(038),
other diseases of lung(518) and heart failure(428). The older,
overweight patient has suffered heart failure(428), complica-
tions from implants and grafts(996) and other forms of chronic

4http://www.cdc.gov/hiv/risk/age/olderamericans/
5http://www.cdc.gov/healthyweight/effects/
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Fig. 4. Disease history of two people with different physical features
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Fig. 5. Disease intensities of two people with different physical features. We
can see that intensity trajectories differ for different patients even though the
diseases being plotted are the same.

ischemic heart disease(414). Based on theses disease records,
we plotted the intensities of three well-known common dis-
eases for each patient using Equation 4.

It can be seen from Figure 5 that the intensity of a disease
not only depends on what types of diseases the patient has dur-
ing the observation and how much time has passed after each
disease, but also on the physical features of the patient. For
example, the intensity of acute myocardial infarction for the
younger patient maintains its default strength since the diseases
he suffered have little influence on acute myocardial infarction.
The intensity of septicemia, on the other hand, spikes after he
suffers septicemia and lung disease, as they both influence
the occurrence of septicemia. You can see, however, that after
a period of time, the intensity of septicemia drops down to
its default strength. The intensity of heart failure maintains
very weak default strength except for the two times the patient
suffers lung disease and heart failure. Now when we study the
intensity of heart failure for the older, overweight patient, after
being influenced by the initial instance of heart disease, the
intensity maintains relatively higher strength throughout the
whole observation compared to the younger, average weight
patient. This is due to the difference of physical features of
the two patients. A higher heart failure intensity for the older,
overweight patient is consistent with what we have presented
in section V.C.2, where we have shown that heart failure acts
more strongly when combined with obesity.

D. Disease Prediction

Next we provide quantitative evaluation of cHawk by
performing disease risk prediction. Given a disease history
of a patient, we try to predict the most likely disease he/she
will have in a certain future time window by calculating the

conditional cumulative distribution of each disease.

We first analyze the influence of the patient history length.
We divided the patients into two groups: patients with less
than 3 visits and patient with at least 3 visits. Then we tried
predicting the disease that occurs in the next three months
window by picking out 10 diseases with the highest conditional
cumulative probability. If one of them was correctly predicted,
we consider it an accurate prediction. We performed 10-fold
cross validation with cHawk to obtain accuracy 0.554375 for
the former group and 0.649206 for the latter group. Clearly, it
is easier to predict future diseases when provided with longer
disease history.

Figure 6 is the result of 10-fold cross validation of risk
prediction by various methods including Hawkes Process and
other well-known methods. We tried predicting diseases that
occurred in four different three months windows, while varying
the number of predictions p. If one of p predictions is correct,
we consider it an accurate prediction. We focus on positive
examples for two reasons: 1. Negative instances are difficult to
deal with since absence of visit does not mean diseases didn’t
occur. 2. False negatives are far more critical in risk prediction
than false positives. For cHawk and Hawkes Process, we
choose p diseases with the highest conditional cumulative
probability.

Poisson Process is a stochastic process which does not
consider the influence of past events, as it assumes the number
of events occurring in a given time interval follows Poisson
distribution. In this experiment, we used homogeneous Poisson
Process which is equivalent to removing the α variables from
the intensity function (2) of Hawkes Process. For Poisson
Process, we also use conditional cumulative probability for
prediction.

Linear regression models were trained to predict the time
of the next occurrence of the disease, given all past diseases
and the most recent age, weight information. All past diseases
were aggregated into a 186-dimension vector, with possible
multiple entries being 1. Due to the sparsity of our data, we
were able to train models for approximately 120 diseases out
of 186. Given a test sample, we ran 120 models to predict
the onset time of each disease, and we picked all diseases that
occurred in the target time window. The average number of
the selected diseases for the different time windows are 48,
14, 11 and 11. This is the reason we put a single dot for linear
regression, as a type of baseline.

For multinomial logistic regression, we used the same
features as linear regression. Unlike other methods logistic
regression calculates the conditional probability p(y|x) of the
next disease being y given patient records x. This makes logis-
tic regression simple and powerful, but it can only predict what
the next disease will be, losing all time-related information.
Again, p diseases with the highest probability were chosen.
Although logistic regression cannot be directly compared with
other temporal models, we plot its performance in the first
figure so that it can serve as a reference.

It is readily visible from Figure 6, that cHawk outperforms
other well-known methods except for the first three month
window. In that particular window, cHawk was having trouble
correctly predicting diseases concerned with newborn infants,
especially Other and ill-defined conditions originating in the
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Fig. 6. Prediction performance comparison for different time windows. We used λ1 = 10, λ2 = 10 for cHawk and Hawkes Process. Regularization was
ineffective for Poisson Process. For the exponential decay parameter, we used 0.2 for cHawk, Hawkes Process and Poisson Process. We used Python Scikit-Learn
for Logistic Regression and Linear Regression.
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Fig. 7. Log-scaled optimization time for different number of patients, visits per patient, and diseases. No regularization was used for µ and α. Exponential
decay parameter was set to 0.5. ε in Algorithm 1 was set to 10−7. L-BFGS provided by Dlib C++ library was used.

perinatal period(779). cHawk, however, was predicting Dis-
orders relating to short gestation and low birthweight(765)
instead, which is very similar to 779. In all other situations,
cHawk exhibits superior performance. Also it is worth noting
that cHawk is particularly robust in making a longer prediction,
which can be attributed to its taking into consideration patient
feature. We can also see that after the first six months, the
predictive power starts to decrease. This corresponds to our
intuition that making a longer prediction is naturally more
difficult.

E. Scalability

In this section, we address the scalability issue by de-
scribing the relation between the size of the data and the
optimization time, and how additional methods can help speed
up the optimization process.

Figure 7 depicts the log-scaled optimization time for
different numbers of patients, individual visits and diseases
respectively6. We tested four different implementations: naive
implementation, dimension decomposition, dimension decom-
position with OpenMP, and the combination of all techniques
mentioned in section IV.C and IV.D. For the naive implementa-
tion, we only measured the most extreme cases due to its slow
speed. Theoretically, optimization of Hawkes Process takes
O(d2v2n) where d is the number of diseases, v the number
of individual visits, and n the number of patients. In reality,
however, optimization is heavily influenced by the distribution
of diseases among patients, the number of occurrences of
each disease, and the distribution of number of visits among
patients. Also, the number of patients, diseases and visits are

6We used unfiltered MIMIC2 to display the scalability of our method

all tied to one another(e.g. If you increase number of patients,
the number of diseases also increases).

In the leftmost figure, we can check the significantly
improved speed of the most optimized fourth implementation
compared to other implementations, especially, the naive im-
plementation. The benefit of the pre-calculation technique is
readily visible in the center figure. As the number of visits
increases, the gap between the third and fourth implementa-
tion also increases. The rightmost figure displays the relation
between the number of diseases and the optimization time.
The near-exponential increase in optimization time is due
to the fact that the number of patients explosively increases
when the number of disease increases. The most realistic
behavior is captured by the leftmost figure, since the number
of patients is the most frequently used measure to represent
the size of EHR. In all three figures, it can be seen that the
proposed optimization techniques reduce the optimization time
by more than three orders of magnitude compared to the naive
implementation.

Finally, as we ran optimization on only a single machine,
there is room for further speed-up if more machines could be
harnessed.

VI. CONCLUSIONS

In this paper we proposed cHawk to capture the three
aspects of EHR, namely disease relations, context-sensitivity
of diseases and temporal dynamics of diseases. We showed
a detailed derivation of the model and also presented an
optimization algorithm. In the experiments, we applied cHawk
to MIMIC II, a real-world EHR comprised of ICU patients, to
build disease networks, context-sensitive heat maps and show



temporal dynamics of disease intensities. Risk predictions
were performed for quantitative evaluation, which showed that
cHawk is able to predict future diseases more accurately than
the original Hawkes Process and other traditional methods.
We also addressed the scalability issue by presenting various
optimization methods and experimenting on data with varying
number of patients, visits, and diseases.

In the future, we plan to apply cHawk to several EHR
datasets of varying patient demographics and diverse sets
of diagnoses. Such application will uncover different sets of
meaningful disease relations. We also plan to use a larger
dataset with numerous patient features, so that we can identify
useful relations between various patient features and the risk
of disease occurrence.
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