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Today’s Topic

• Recurrent Neural Network
• Vanilla RNN
• Bidirectional RNN
• GRU, LSTM

• Sequence-to-sequence
• Neural Machine Translation

• Attention



Recurrent Neural Network



Handling Variable-Length Sequences

• Image-to-Label
VS

• Sentence-to-Label



Handling Variable-Length Sequences

• Image-to-Label          è Input size is fixed
VS

• Sentence-to-Label     è Input size varies by sample



Bag-of-Words

• Classical way to handle variable length sentences/documents
• I gave the ball to John, who gave it to Mary
• I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1



Bag-of-Words

• I gave the ball to John, who gave it to Mary
• I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1
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Bag-of-Words

• I gave the ball to John, who gave it to Mary
• I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1

• I gave the ball to Mary, who gave it to John
• I:1, gave:2, the:1, ball:1, to:2, John:1, who:1, it:1, Mary:1

• Different meaning, same representation!



Classical NLP

• Syntax, Semantic, Discourse, Pragmatic
• Part-of-speech tagging
• Parsing
• Named entity recognition
• Semantic role labeling

• Many of them made obsolete by deep learning
• Or are they…?



Recurrent Neural Network

• Represent variable-length input
• ht = f(Wxt + Uht-1 + b)
• f: non-linear activation function (originally tanh)

x1

h
1

x2 x3

h
0 (=0)

h
2

h
3



RNN

• Represent variable-length input
• Same weights at each timestep to handle variable-length sequence
• U: ht-1 to ht

• W: xt to ht
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RNN

• Represent variable-length input
• Feedforward Neural Network with

new information at each timestep. 
• But use the same weights repeatedly.
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Application

• Sequence-level classification/regression
• Sentiment classification
• Topic classification

• Classification/regression at each step.
• Language modeling
• Part-of-speech tagging

• Sequence-to-sequence
• Translation
• Question answering



Sequence-level Classification

• Sentiment classification: Positive or Negative?
• “This movie is as impressive as a preschool Christmas play”



Sequence prediction with RNN

• Sentiment classification: Positive or Negative?
• “This movie is as impressive as a preschool Christmas play”

Hidden Layer h
1

h1= 𝝈(Wi
Tx1) 

x1 (a vector with 1M elements. Only “this” is 1.)
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Sequence prediction with RNN

• Sentiment classification: Positive or Negative?
• “This movie is as impressive as a preschool Christmas play”
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Sequence prediction with RNN

• Sentiment classification: Positive or Negative?
• “This movie is as impressive as a preschool Christmas play”
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Sequence prediction with RNN

• Sentiment classification: Positive or Negative?
• “This movie is as impressive as a preschool Christmas play”

h
10 Output

y = 𝝈(wo
Th10)

Outcome 0.0 ~ 1.0

18



Language Modeling

• p(“This movie is as impressive as a preschool Christmas play”)
• What is the probability of this sentence?
• (Probably super small…)



Language Modeling

• p(“This movie is as impressive as a preschool Christmas play”)

• p(This)*p(movie | This)*p(is | This, movie)*…*p(play | This, movie, …, Christmas)

• Need a model that can perform:
• p(wt | w1, w2, … wt-1)



Language Modeling

• p(“This movie is as impressive as a preschool Christmas play”)
• p(This)*p(movie | This)*p(is | This, movie)*…*p(play | This, movie, …, Christmas)

• Need a model that can perform:
• p(wt | w1, w2, … wt-1)

• Traditionally:
• Unigram, bigram, trigram
• Bigram è p(wt | wt-1),        Trigram è p(wt | wt-2, wt-1)
• Limited horizon

• With RNN
• Theoretically, can model full p(wt | w1, w2, … wt-1)



Language Modeling with RNN

• “This movie is as impressive as a preschool Christmas play”
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Language Modeling with RNN

• “This movie is as impressive as a preschool Christmas play”
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Bidirectional RNN

• Encode a sequence in two directions
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Bidirectional RNN

• Encode a sequence in two directions
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Limitation

• Vanishing gradient still exists.
• Long sequence means long backpropagation chain!

• Input from a distant past is forgotten!
• Ex: “Jane walked into the room. John walked in too. It was late in the day. Jane 

said hi to ____ ”

• How to remedy this?
• Some old tricks: Initialize weight matrices to identity matrices, use ReLU.

• Exploding gradient also exists.
• Popular remedy: gradient clipping



Gated Recurrent Unit

Reference: https://cs224d.stanford.edu/lectures/CS224d-Lecture9.pdf
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Gated Recurrent Unit
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Gated Recurrent Unit

Reference: https://cs224d.stanford.edu/lectures/CS224d-Lecture9.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture9.pdf


Long Short Term Memory

Reference: https://cs224d.stanford.edu/lectures/CS224d-Lecture9.pdf

https://cs224d.stanford.edu/lectures/CS224d-Lecture9.pdf


Sequence-to-Sequence



Sequence-to-Sequence

• Given variable-length sequence input,
Predict (Generate) variable-length sequence output
• Machine translation
• Question answering
• Chatbot

• Naturally, we need two RNNs!
• Why?



Machine Translation

• “Je suis etudiant” è “I am a student”
• French-to-English
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Machine Translation

• What is the output of Encoder?
• What is the input of Decoder?

Je
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I am a student <eos>

Encoder
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Machine Translation

• Encoder’s last hidden layer is the initial state of Decoder
• h4 represents the input sentence

• Autoregressive input to Decoder
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Machine Translation

• At training phase:
• Decoder input is the ground true tokens.
• Apply negative log-likelihood to predicted outputs.
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Machine Translation

• At test phase:
• Decode input is the previous predicted token.

• Autoregressive input
• Repeat until <EOS> is predicted.

Je

h1

suis

h2

etudiant

h3

<eos>

h4

s1 s2 s3 s4 s4

!y!

<start> !y!

!y" !y# !y$ !y%

!y" !y# !y$



Attention



Attention models

• Bahdanau, Cho, Bengio, 2014
• English-French translation using RNN

• Let’s use hidden layers from all timesteps to make predictions

40



Attention models

• Bahdanau, Cho, Bengio, 2014
• English-French translation using RNN

• Let’s use hidden layers from all timesteps to make predictions
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Attention models

• Bahdanau, Cho, Bengio, 2014
• English-French translation using RNN

• Let’s use hidden layers from all timesteps to make predictions

c

𝛼! 𝛼" 𝛼)
𝛼!* 𝛼! + 𝛼" +⋯+ 𝛼!* = 1

𝒄 = 𝛼!𝒉! + 𝛼"𝒉" +⋯+ 𝛼!*𝒉!*
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Attention models

• Bahdanau, Cho, Bengio, 2014
• English-French translation using RNN

• Let’s use hidden layers from all timesteps to make predictions

Outputc

𝛼! 𝛼" 𝛼)
𝛼!*

y = 𝝈(wo
Tc)
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Attention models

• Attention, what is it good for besides improved performance?

44



Attention models

• Attention, what is it good for besides improved performance?

• Now c is an explicit combination of all past information
• 𝛼#, 𝛼$, ⋯ , 𝛼#% denote the usefulness from each word
• We can tell which word was used the most/least to the outcome

• Attentions 𝛼/ are generated using an MLP

c

𝛼! 𝛼" 𝛼)
𝛼!*
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How to generate the attentions 𝛼!?

• Use another feedforward neural network model

Input Layer x

Hidden Layer h

Output y

x

h = 𝝈(Wh
Tx)

y = wo
Th (outcome −∞~+∞)

Let’s call this function y=a(x)
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How to generate the attentions 𝛼!?

• Use function a(.) for each hi
• Feed the scores y1, y2, …, y10 into the Softmax function

h1

a(h1)

y1

𝛼# =
exp(𝑦#)

∑$%!!" exp(𝑦$)

47h2
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How to generate the attentions 𝛼!?

• Use function a(x) for each word: Justice, League, …, Christmas, play
• Feed the scores y1, y2, …, y10 into the Softmax function

Softmax function ensures 𝛼#’s sum to 1 

48h1
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Attention in Seq2Seq

• Each yi is predicted based on si

• Each si is derived based on si-1, yi-1

Je
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h3
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<start> !y!
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Assuming we are predicting y2



Attention in Seq2Seq

• Each yi is predicted based on si

• Each si is derived based on si-1, yi-1, ci

• ci is derived from si-1 and h1:T

Je

h1

suis

h2

etudiant

h3

<eos>

h4

s1 s2

!y!

<start>

!y!

!y"

c2

Assuming we are predicting y2



Attention in Seq2Seq

• Each yi is predicted based on si
• yi = Softmax(Wwsi + b)

• Each si is derived based on si-1, yi-1, ci
• si = RNN(si-1, [yi-1;ci]concat)

• ci is derived from si-1 and h1:T
• ci = sum(𝛼/*hi)
• 𝛼/ = Softmax(f(si-1, h1), … , f(si-1, hT))
• f(si-1, hj) = si-1TWfhj

Je
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suis

h2

etudiant

h3

<eos>

h4
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y"!
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y""
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Attention Example

• English-French translation
• Bahdanau, Cho, Bengio 2014
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