Al504: Programming for Artificial Intelligence

Week 13: Graph Neural Networks

Edward Choi
Grad School of Al
edwardchoi@kaist.ac.kr

Index

* Graphs

* Graph Convolution
e Relation with ConvNets

* Graph Neural Networks & Transformer
 Self-attention VS graph convolution

Graphs

Graph

e Data consists of
* Nodes (i.e. Vertices) V
* Edges (i.e. relations) E

Graph

e Data consists of
* Nodes (i.e. Vertices) V
* Could have node-specific features

* Edges (i.e. relations) E
e Could be undirected or directed
* There could be multiple relation types

Graph

e Data consists of
* Nodes (i.e. Vertices) V
* Edges (i.e. relations) E

* Many datasets are graphs
* Facebook friends

Web documents

Road networks

Chemical compounds

Knowledge bases

Graph Data Examples

* Friends Network
* Nodes are unspecific

* Undirected edges e
. - - (:friend)

* Social Network Analysis | o " 0\ »

« Hot topic since SNS | - -

. P . (dfriend) o o R i /
* Can find influencers (trienc) /,
q ! (:friend)
e Can recommend friends 0
(friend) (:friend) / I \

/ (:friend)
(:friend)
(:friend)
% frien >

(:friend)

(:friend)

Graph Data Example

e Web documents

* PageRank
* Made Google Search possible

* Unspecific node
* Each webpage is just a node

* Directed edges
e QOutgoing links are edges

e Calculated based on random walk.

* The more incoming links,
the more valuable a webpage is!

Graph Data Example

* Chemical structures

e Unspecific duplicate nodes
* Same C (carbon) is used multiple times

* Undirected multi-type edges 0O H H\ /H
* Single bond, double bond \ ‘ /C

* Hot topic these days /C —C \ /H
* Drug development H—O ‘ C\
* Toxicity prediction N / H

Graph Data Example

* Knowledge Base

* Multiple node types
* Entity, value

LA JOCONDE / Y 4
A WASHINGTON

* Directed, multi-type edges
* is_a, parent_of, located at
* Structured knowledge
* Popular topic

* Knowledge grounded reasoning

SRS 2

& 3

< ‘

J e
¥ :
PG N
g g
.;A@!

DA VINCI

ui pa1e20] s!

palsIA sey

is a friend of

Jan 11984

Generally Speaking...

* Everything is a graph
e Sequences are a special case of graphs (i.e. directed chains)

(B —(—(&

Generally Speaking...

* Everything is a graph
* Images are a special case of a graph (i.e. undirected grids)

Regular 4x4 2D grid
@ @ @ 9

Graph Convolution

Graph Representation

* How can we represent graphs?

* Images can be represented by ConvNets
e 128x128 RGB image = ResNet = 2048-dimensional feature vector

 Text can be represented by RNN / BERT

* 20 token text = RNN/BERT =» 20 contextualized embedding
* Graph?

* Graph=2>?=>?

Graph Representation

* How can we represent graphs?

* Images can be represented by ConvNets
e 128x128 RGB image = ResNet = 2048-dimensional feature vector

» Text can be represented by RNN / BERT

* 20 token text = RNN/BERT =» 20 contextualized embedding
* Graph?

e Graph with |V| nodes and |E| edges = ? = ?

Graph Representation

* How can we represent graphs?

* Images can be represented by ConvNets
e 128x128 RGB image = ResNet = 2048-dimensional feature vector

» Text can be represented by RNN / BERT

* 20 token text = RNN/BERT =» 20 contextualized embedding
* Graph?

* |V| nodes and |E| edges = ? = |V| embeddings

Why not ConvNet?

e Convolution filters assume same number of neighbors
* General graphs assume no such thing...

Regular 4x4 2D grid
* @ e @

Why not ConvNet?

e Convolution filters assume same number of neighbors
* General graphs assume no such thing...

* But we can use the core principle of ConvNet filters
* Aggregate features from the local neighbors

DX W;
X;
°s s % ®
Wi
®
@

Graph Convolution Principle

Given a graph G = (V, E),

* At each node v, aggregate all neighbors’ features
*a; = Zvjec/zif(vj); where A;: Set of nodes connected to v;

* Combine v/'s feature with neightbors’ features
* h; = g(f(vy),a)

* h. = Representation of node v,

Graph Convolution Equation

* A: Adjacency matrix

0 1 1 0 0 0 a

0 1 1 0 0 0
0 1 0 0 0 0

Graph Convolution Equation

* A: Adjacency matrix
e X: Node index
* W: Node embedding vector

o|l1|1]0]|o0]|o0 f(v4)
1 |o|o|1|1]o0 f(vy)
1 |o|o|1|0]1 f(vs)
ol1|1]0]o0]oO f(va)
ol1]|o0o|o0o]|o0]oO f(vs)
olo|l1]o0]|o0]|oO f(ve)

Graph Convolution Equation

* AXW

f(vy)

f(vy)

f(vs)

f(va)

f(vs)

f(ve)

XW

f(vy) + f(vs)

f(vy) + fva) + f(vs)

f(v1) + f(va) + f(ve)

f(vy) + f(vs)

f(vy)

f(vs)

AXW

Graph Convolution Equation

 AXW =» Is this the node representations H?

o|l1|1|0]|]o0]oO f(v4)
1 0| O 1 1 0 f(v,)
1 |o|o0o| 1|01 f(vs)
X
o|l1|1]0]o0]o0O f(vy)
o|l1]|0]o0o]o]o f(vs)
o|lo|1|0]|]o0]oO f(ve)

f(vy) + f(vs)

f(vy) + fva) + f(vs)

f(v1) + f(va) + f(ve)

f(vy) + f(vs)

f(vy)

f(vs)

AXW

Graph Convolution Equation

* No, AXW is just neighbor aggregation.
* We need the combination step!

o|l1]|1|0o]o0]|oO f(vy) f(va) + f(v3)

1 oo 1|1]o0 f(v,) f(va) + f(va) + f(vs)
1 |o|o0o|1|0]1 f(vs) f(va) + f(va) + f(ve)
o|l1|1|0]0]|o0O X f(vs) - f(va) + f(vs)
o|l1]|o0|o0o]|o0]|oO f(vs) f(v,)
o|lo|1|o0o]|o0]|oO f(ve) f(vs)

A XW AXW

Graph Convolution Equation

e New A=A + |

* |: Identity matrix

11| 1]0|0]o0 f(v4) f(v) + f(vy) + f(vs)
1|10 1|1]o0 f(v,) f(va) + f(vy) + f(va) + f(vs)
1 o] 1|1]0]1 f(vs) f(va) + f(vs) + f(va) + f(ve)
o|1|1|1]0]|0 X f(v4) - f(va) + f(v3) + f(va)
o|l1]o0]o0| 1|0 f(vs) f(vy) + f(vs)
olo|l1|lolo]1 f(ve) fv) + f(ve)

A=A+ XW A’XW

Graph Convolution Equation

 A’XW performs neighbor aggregation and combination
* Combination function g is just simple summation.

* AXW can be node representations H!

f(vy)

f(vy)

f(vs)

f(va)

f(vs)

1 1 1 0 0 0
1 1 0 1 1 0
1 0 1 1 0 1
0 1 1 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
A=A+

f(ve)

XW

@)
e
@

hy = f(vq) + f(vy) + f(vs)

h, = f(vy) + f(v,) + f(vy) + f(vs)

hs = f(vyq) + f(vs) + f(va) + f(ve)

hy = f(vy) + f(vs) + f(vy)

hs = f(v,) + f(vs)

he = f(v3) + f(ve)

A’XW

Graph Convolution Equation

* But there is another problem:

@)
e
@

* Scales of node features differ by the number of neighbors!

* h, can be twice as large as h¢!

f(vy)

f(vy)

f(vs)

f(va)

f(vs)

f(ve)

1 1 1 0 0 0
1 1 0 1 1 0
1 0 1 1 0 1
0 1 1 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
A=A+

XW

hy = f(vq) + f(vy) + f(vs)

h, = f(vy) + f(v,) + f(vy) + f(vs)

hs = f(vyq) + f(vs) + f(va) + f(ve)

hy = f(vy) + f(vs) + f(vy)

hs = f(v,) + f(vs)

he = f(v3) + f(ve)

A’XW

Graph Convolution Equation

* D: Degree matrix

* Diagonal matrix where d;, = number of edges

* DIA”: Normalized adjacency matrix

f(vy)

f(vy)

f(vs)

f(va)

f(vs)

33 (33|33 O 0 0
25 (.25 0 |.25(1.25] O
25 0 |.25]|1.25| O | .25
0O |.33(.33|.33| O 0
0 5 0 0 5 0
0 0 5 0 0 5
D-1A’

f(ve)

XW

hy =0.33 * (f(vq) + f(v,) + ...)

h, =0.25 * (f(v,) + f(v,) + ...)

h; =0.25 * (f(vq) + f(v3) + ...)

h, =0.33 * (f(v,) + f(v3) +...)

hs = 0.5 * (f(v,) + f(vs))

hg = 0.5 * (f(v3) + f(ve))

D-1A’XW

Graph Convolution Equation

* One more thing:

 DTA’XW =» All linear operations
* Need non-linearity

33(.33].33]| 0 0 0
25 (.25 0 |.25(.25] O
O' 25 0 |.25]|1.25| O | .25
(0O |.33(.33|.33| O 0
0 5 0 0 5 0
0 0 5 0 0 5
DA’

)

hy=0.33 * (f(vq) + f(v,) + ...

h, =0.25 * (f(v,) + f(v,) + ...

h; =0.25 * (f(vq) + f(v3) + ...

h, =0.33 * (f(v,) + f(v3) + ...

hs = 0.5 * (f(v,) + f(vs))

hg = 0.5 * (f(v3) + f(ve))

D-1A’XW

Graph Convolution Equation

e H=o0(D1A'XW)
e A’=A+1
* D = Degree matrix
* 0 = Non-linear activation
W= Learnable parameters

Graph Convolution Equation

e HY = g(D"1A'XW)
* This is aggregating neighbors just 1-hop away

Graph Convolution Equation

e HY = g(D"1A'XW)
* This is aggregating neighbors just 1-hop away
* How do we aggregate neighbors 2-hops away?

Graph Convolution Equation

* How do we aggregate neighbors 2-hops away?
> H2) — O'(D_lA’H(l)W(Z))

5+2+2+1+445

Graph Convolution Equation

* How do we aggregate neighbors k-hops away?
> Hk) — O'(D_lA’H(k_l)W(k))

Graph Convolution Variations

 Different normalization
o« HF) — U(D—l/ZA’D—l/ZH(k—l)W(k))
* Motivated by spectral graph convolution
* Whole theory regarding graph laplacian...

* Different Combination step
* Instead of summation g(f(v;),a;) = f(v;) + a;,
* Use linear layer g(f(v;),a;) =W - [f (v;); a;]
* Nodes become RNNs
* More sophisticated way to accumulate N-hop information

* Many more variations =2 Called Graph Neural Networks (GNN)

Semi-Supervised Classification with Graph Convolutional Networks (https://arxiv.org/pdf/1609.02907.pdf)
How Powerful are Graph Neural Networks? (https://openreview.net/pdf?id=ryGs6iA5Km)

GNN & Transformer

Attention is All You Need

* Vaswani et al. 2017
* Let’s use only attentions to handle sequences.

—_—

I like going to movies <end>

—

I like going to movies <end>

Attention of “I”

Attention of “like”

Self-Attention
o Attention(Q,K,V) = Softmax(

05 | 01 00 02 | 02 00 I

02 | 06 00 00 01 00 like
going
to
movies

<end>

T
Softmax (Q\/I;) V

QK"

Vd

Jv

»

0.5* + 0.1%like + 0.2*to + 0.2* movies

0.2* + 0.6%like + 0.1*movies

Attention(Q, K, V)

Graph Convolution

e HBO — O'(D_lA’H(k_l)W(k))

333333/ 0| 0|0 f(vy) hy =0.33 * (f(vq) + f(vy) + ...
25(.25| 0 (.25 .25 O f(v,) h, =0.25 * (f(v,) + f(v,) + ...
25| 0 |.25|.25| 0 | .25 f(vs) h; =0.25 * (f(vq) + f(v3) + ...
0 [33(.33(.33| 0| O X f(vy) - h, = 0.33 * (f(v,) + f(v3) + ...
0 .5 0 0 .5 0 f(vs) hs = 0.5 * (f(v,) + f(vs))
0 0| 5|0 0 | .5 f(ve) he = 0.5 * (f(vs3) + f(vg))

D-1A’ XW D-1A’XW

Transformer & Graph Networks

* Graph Networks

. C = MLPY D 'ACU- VW)

* Transformer

, , DKWDT _
* CY = MLPY (softmax(V)
Vd

QW) — c(j—nwg) K = C(i—1>w§§) v)

= cU-Hw{)

40

Transformer & Graph Networks

* Graph Networks

+ CY) = MLPY(D~AICU-D W)

Adjacency Matrix <= Self-Attention
* Transformer /
| T OUWKODTY
* CV = MLP(J)QSoftmaX(Vg V)
| d |

QY — C(j_nt) KG) — C(j—1>W§§) v — C(J'—l)Wg)

Transformer & Graph Networks

* Graph Networks

Node Embedding < Token Embedding
* Transformer

| | DKDT
* CY = MLPY (softmax(YV
Vd

QY = cU-HWY KO = ci-HWP v ='ci-Dw!

42

Selt-Attention VS Graph Convolution

* Self-attention
* Don’t know graph structure

e Assum (implicitly) fully-connected graph
e Learn edge weights during training

* Learn node embeddings in a data-driven fashion

* Graph convolution
* Prior knowledge on graph structure
* Learn node embeddings based on the fixed adjacency matrix

Transformer instead of GNN?

* Learn the edge weights with attention

e Zero-out the probability of non-connected edges
* Mask QK/sqgrt(d) with negative infinity matrix
e Graph Attention Network (https://arxiv.org/pdf/1710.10903.pdf)

 Learning the structure of graphs with attention
* Use self-attention to learn the underlying graph structure

 Start with a prior knowledge driven adjacency matrix, then gradually evolve
with self-attention

* Prior knowledge: conditional probability between pairs of nodes
e Graph Convolutional Transformer (https://arxiv.org/pdf/1906.04716.pdf)

https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1906.04716.pdf

Chemical Structures

* AlphaFold

Amino Alpha Pleated Pleated Alpha
acids helix sheet sheet helix

* COVID-19

Small SMILES used in the DT1 prediction Kqin MT-DTI
molecules nM Rank
out of
3411
Atazanavir COC(=0)NC(C(=0)N((Cclecccee)O)YCN(Celcee—c2cceen2)ec 1)NC(=0)C(NC(=0)0C)C(CY O)O)C(C) o) 9494 66
Remdesivir* CCC(COCO=0)|[C@H|(ON[P@|(=0)oC|C@@H]1[C@H]([C@H](]C@](O1)(C#N)C2 = CC = (3N2N = CN = (3N)0)0) 11313 70
0o4=CC=CC=¢4
Efavirenz* 0 = CINQ2cec(Cl)ce2|C@@)(CHCC2CC2)(C(FXF)F)O1 199.17 116
Ritonavir CC(C)e1nc(CN(C)C(=0)NC(C(=0)NC(Cc2ceeec2)OO0) Ce2cccec2)NC(=0)0Cc2enes2) C)C)es 1 204.05 119
Dolutegravir CC1CCOC2Cn3cd C(=0)NCcdcec F)ecdF)e(=0)(0)c3C(=0)N12 336.91 162
Asunaprevir C = CCICCIH{NC=0)C1C02ncc(0C)3ced Cl)ec23)N 1C(=0)C(NC(=0)OC(CY OO CY O)O)=0)NS(=0)=0)C1CC1 581.77 270
Ritonavir* CC(C)c1nc(CN(C)C(=0)N[C@H](C(=0)N]C@@H(Cc2cceec2) C@H(0)[C@H |(Cc2ccccc2)NC(=0)0Cc2enes2) C)C)es 1 609.02 283
Simeprevir* COc1cec2c(0O]C@H|3CCAC(=0)N(C)CCCC/C = C\|C@H]5C| C@@]5(C(=0)NS(=0)(=0)C5CC5)NC(=0)|C@@H |4C3)cc(—c3nc(C 82624 356
(C)C)es3)nc2c1C

Beck, B.R., Shin, B., Choi, Y., Park, S. and Kang, K., 2020. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model.

Computational and structural biotechnology journal, 18, pp.784-790.

45

Al504: Programming for Artificial Intelligence

Week 13: Graph Neural Networks

Edward Choi
Grad School of Al
edwardchoi@kaist.ac.kr

