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Today’s Topic

* CNN

* Filter, Strides, Pooling
1D, 3D CNN

* Training Technique
e BatchNorm, Dropout

* CNN Architectures
* VGG, Inception, ResNet

* Project 1



Convolutional Neural Network



Biological Motivation

* Human visual perception

and objects visual field

https://neurdiness.wordpress.com/2018/05/17/deep-convolutional-neural-networks-as-models-of-the-visual-system-qa/
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https://neurdiness.wordpress.com/2018/05/17/deep-convolutional-neural-networks-as-models-of-the-visual-system-qa/

History

* LeNet-5

* Gradient-based learning applied to document recognition
* [LeCun, Bottou, Bengio, Haffner 1998]

Image Maps

Fully Connected

Input

Convolutions
Subsampling

http://cs231n.stanford.edu/slides/2020/lecture 5.pdf



http://cs231n.stanford.edu/slides/2020/lecture_5.pdf

History

e AlexNet

* ImageNet Classification with Deep Convolutional Neural Networks
* [Krizhevsky, Sutskever, Hinton, 2012]
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https://medium.com/coinmonks/paper-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-b93598314160

Modern ConvNets

Classification
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Modern ConvNets




Modern ConvNets

No errors

A white teddy bear sitting in A man in a baseball A woman is holding a cat
the grass uniform throwing a ball in her hand

A man riding a wave on A cat sitting on a A woman standing on a
top of a surfboard suitcase on the floor beach holding a surfboard



Modern ConvNets




Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wx
1 10 x 3072 1[0
3072 X 10
weights

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 58 April 21, 2019



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wx

10 x 3072
weights

activation
—> 1 (O
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 59 April 21, 2019



Convolution Layer

32x32x3 Image -> preserve spatial structure

32 height

3 depth

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 60 April 21, 2019



Convolution Layer

32x32x3 image

5x5x3 filter (a.k.a kernel)

32
Convolve the filter with the image
. l.e. “slide over the image spatially,
computing dot products”

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 61 April 21, 2019



ConVOI UtIOn Layer Filters always extend the full
_—— depth of the input volume

32x32x3 image /
5x5x3 filter
32
Convolve the filter with the image
. l.e. “slide over the image spatially,

computing dot products”

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 62 April 21, 2019



Convolution Layer
__— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz +b

1 number:

April 21, 2019

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 63



Convolution Layer

32

—0

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 64 April 21, 2019



Convolution Layer

32

==

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 65 April 21, 2019



Convolution Layer

32

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 66 April 21, 2019



Convolution Layer
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Convolution Layer

activation map

__— 32x32x3 image

5x5x3 filter /
2
T>@ ”

convolve (slide) over all

spatial locations
32 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 68 April 21, 2019



Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
o
T>@ 2

convolve (slide) over all

spatial locations
32 % 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 69 April 21, 2019



For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

activation maps

32

28

Convolution Layer

; .

3 6

We stack these up to get a “new image” of size 28x28x0!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 70 April 21, 2019



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

CONV,
RelLU
e.qg.6
OX5X3
filters

32 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 71 April 21, 2019



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

CONV,
RelLU
e.qg.6
OX5X3
filters

28

28

24

>
>

CONYV,
RelLU
e.qg. 10
OX5X6
filters

CONYV,
RelLU

24

10

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5- 72

April 21, 2019



Receptive Field

* Repeated Conv layers increase the receptive field.
* 3 layers of 3x3 filter has the same receptive field as a single 7x7 filter.
* The former requires less params, and is deeper!

Input A1 A2 A3

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)



Preview

Low-level
features

Visualization of VGG-16 by Lane McIntosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

[Zeiler and Fergus 2013]

Linearly
separable
classifier

Mid-level High-level
features features

-
|

iy
| D
A

]
.-'J.!‘

-
- -
e

i

W || BT
-

e
lﬁ‘v‘

VGG-16 Convl 1 VGG-16 Conv3 2 VGG-16 Convs 3

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5- 73 April 21, 2019



one filter => _
one activation map example 5x5 filters
(32 total)

)

SNCISEESRNIITN NESEIASFTISRERASRS
‘.

Activations:

We call the layer convolutional
because it is related to convolution

of two signals:

fleylxglxyl = Y Y flo.n,l glx—n,y—n,]

elementwise multiplication and sum of
a filter and the signal (image)

Figure copyright Andrej Karpathy.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5- 75 April 21, 2019



preview:
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Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5- 76 April 21, 2019



A closer look at spatial dimensions:

activation map

__— 32x32x3 image

5x5x3 filter /
=
i>@ “

convolve (slide) over all

spatial locations
32 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5- 77 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5- 78 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 79 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 80 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 81 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter

=> 5x95 output

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 82 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 83 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter
applied with stride 2

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 84 April 21, 2019



A closer look at spatial dimensions:

14
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 85 April 21, 2019



A closer look at spatial dimensions:

14
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 86 April 21, 2019



A closer look at spatial dimensions:

I4

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

14 doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 87 April 21, 2019



Output size:
(N - F) / stride + 1

eg.N=7F=3:
stride1=>(7-3)/1+1=5
stride 2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1=2.33:\

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 88 April 21, 2019



In practice: Common to zero pad the border

00

0

0

0

0

e.g. input 7x/
3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

(recall:)

(N - F) / stride + 1

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 89

April 21, 2019



In practice: Common to zero pad the border

olo|o|0|0]O .
e.g. input 7x/
0 3x3 filter, applied with stride 1
0 pad with 1 pixel border => what is the output?
0
7x7 output!
0
(recall)
(N + 2P - F) / stride + 1

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 90 April 21, 2019



In practice: Common to zero pad the border

00

0

0

0

0

e.g. input 7x/
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONYV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 =>zero pad with 3

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Lecture 5 - 91

April 21, 2019



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 93 April 21, 2019



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 94 April 21, 2019



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 95 April 21, 2019



Examples time:

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 553 + 1 = 76 params  (+1 for bias)
=> /6*10 = 760

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 96 April 21, 2019



Convolution layer: summary “ommon settings:

Let's assume inputis W, x H, xC "~ (Eiwfrngf 09 52,08, 126,512
Conv layer needs 4 hyperparameters: F=5S8=1 P=2
- Number of filters K F=5,S =2, P="7? (whatever fits)
- The filter size F F=1,5=1,P=0

- The stride S
The zero padding P
ThIS will produce an output of W, x H, x K
where:
- W,=(W,-F+2P)/S + 1
- H, —(H F+ 2P)/S + 1
Number of parameters F°CK and K biases

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 98 April 21, 2019



(btw, 1x1 convolution layers make perfect sense)

1x1 CONV

56 with 32 filters 56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 99 April 21, 2019



(btw, 1x1 convolution layers make perfect sense)

L

1x1 CONV
56 with 32 filters

56

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

64 32

56

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - April 21, 2019



Example: CONV
layer in PyTorch

Conv layer needs 4 hyperparameters:
- Number of filters K
- Thefilter size F
- The stride S
- The zero padding P

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

. . . [SOURCE]
dilation=1, groups=1, bias=True)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, CiavH, W) and output
(N, Couty Hout s Wout) can be precisely described as:

Cin—1

out(N;, Cout;) = bias(Coyt,; ) + Z weight(Couy, , k) * input(IV;, k)
k=0

where * is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of

input planes in pixels, and W is width in pixels.

« stride controls the stride for the cross-correlation, a single number or a tuple.
¢ padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
s dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
« groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o At groups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.

o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: [%‘LJ 5

The parameters kernel_size, stride, padding, dilation can either be:

e asingle int - in which case the same value is used for the height and
width dimension
» a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension

Lecture 5 -

PyTorch is licensed under BSD 3-clause.

April 21, 2019

Fei-Fei Li, Ranjay Krishna, Danfei Xu



Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
| 112x112x64

pool

——

|

P
downsampling
112

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - April 21, 2019



Single depth slice

MAX POOLING

max pool with 2x2 filters

and stride 2

11112 | 4
5 6| 7|38
312|110
1123 | 4

y

Fei-Fei Li, Ranjay Krishna, Danfei Xu

>

Lecture 5 -

April 21, 2019



Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural
Networks

RELU RELU RELU RELU RELU RELU
CONVlCONVl CONV CONVl CONVlCONVl

¢ |
=
=

W

AR LGN E

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - April 21, 2019



Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Historically architectures looked like
[(CONV-RELU)*N-POOL?]1*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet
have challenged this paradigm

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - | April 21, 2019



1D ConvNet

e Used for processing sequences
* Sentences, audios, time-series

2 || 2 1 2 1

Filter size: 3, Stride: 1

https://cs231n.github.io/convolutional-networks/

Filter size: 3, Stride: 2



https://cs231n.github.io/convolutional-networks/

1D ConvNet

* Processing a sequence of word embeddings

e T
L L
o [TTTTTH L
Video —e.... __
and B R 1
do e :A—
n't .................................. -w-—
rent [T T T T T . n

n x k representation of
sentence with static and
non-static channels

Convolutional layer with
multiple filter widths and
feature maps

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output



3D ConvNet

» Used for processing 3D tensors
* Sequence of images (CT scans), videos

3D data

https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610



https://towardsdatascience.com/understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

2D Conv VS 3D Conv

H| k __--" R |:> Output H k

Output

L 4
~

(a) 2D convolution on an image

K T
H d / l:> Output .

L

k y L7—> Output
k d /' —

(c) 3D convolution on a volume

Liu et al. (2019). A Uniform Architecture Design for Accelerating 2D and 3D CNNs on FPGAs

W L
(d) 3D convolution on multiple channels




Training Technique



Normalization

* It is usually a good idea to normalize your input to N(O, 1)
* 0 mean, unit variance
* Assumes normally distributed data though

~(F) _ (k) _ E[q;(k)]
v/ Var[z ()]




Distribution Shift

* If your test data are wildly different from the training data...
* Training data: MNIST
* Test data: CIFAR-10

* Machine learning models are usually vulnerable to distribution shift



Internal Distribution Shift

 Layer k-1's activation is layer k’s input.

* Parameter update changes layer k-1's activation.
* Forces layer k to adapt to new distribution after every update.

Layer
k-1

Layer




Batch Normalization

* Let’s remove internal distribution shift.
e BatchNorm paper call is “Internal Covariate Shift”.

Input: Values of 2 over a mini-batch: B = {z1._ ., };
Parameters to be learned: ~, 3
Output: {y; = BN, s(z;)}

1 -
UB < — E X // mini-batch mean
m “—
1 e
0 — — E (z; — pB)? // mini-batch variance
=1
~ :I; - B .
7 K // normalize

\/O‘% + €

yi < vx; + B = BN, g(x;) // scale and shift



Internal Distribution Shift

 Layer k-1's activation is layer k’s input.
* Parameter update changes layer k-1's activation.
* Fix the distribution of the internal layer’s activation!

Layer
k-1

Layer




Batch Normalization [loffe and Szegedy, 2015]

C o 1
Input: »: N x D Hi = sz‘,j SPﬁ;Dc:?SnBeI mean,

N
i i Z(:B o ,U')Q Per-channel var,
7 N « ¢sJ 77 shapeis D
N X 1=1

R X;
X = i,g — Hy Normalized X,

\/ + £ Shape is N x D

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 78 April 24, 2018




Batch Normalization [loffe and Szegedy, 2015]

Input: : N x D 1 = - sz ~ Per-channel mean,
’ N 4 ; ) shape is D
 R—
1 N
2 _ Z 2 Per-channel var
0‘. e :1: P A y
J N (@35 = Hj) shape is D
N X i=1
x;
Ti 5 = ij — P Normalized x,
\/ + e Shape is N x D
D Problem: What if zero-mean, unit

variance is too hard of a constraint?

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 79 April 24, 2018



Batch Normalization [loffe and Szegedy, 2015]

N
Input: »: N x D _ 1 Per-channel mean
. . W r— x i y
Hj N Zl "} shape is D
=
Learnable scale and ;1 N ) Perchannel
. er-channel var
u O‘ 3 I — LE Y A y
shift parameters: i TN Z;( i,j — Mj) shape is D
Y, 8 : D -
A Li,j — Hj .
Tij = Normalllzed X,
Learning v =0, 0f+¢  ShapeisNxD
ﬁ: . will recover the Ui = s+ 3, Output
identity function! - vy 7" Shapeis N x D

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 80 April 24, 2018




Estimates depend on minibatch;

Batch Normalization: Test-Time _ (. i ot toctrime:

Input: »»: N x D . r. . Per-channel mean,
shape is D

Learnable scale and

. 2 Per-channel var
. : T: ;. — 1 y
shift parameters: Z( .5 — fhi) shaps is D
Y, b D S—
Ti 5 = 2 d Normalized x,
Learning v =0, 02 +¢  ShapeisNxD
B= 1 will recover the ) Output,

identity function! Yij = V5%ig + P Shape is N x D

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 81 April 24, 2018




Batch Normalization: Test-Time

Input: »: N x D y; = (Running) average of Per-channel mean,
J values seen during training shape is D

Learnable scale and , Der-channel

. _ 2 __  (Running) average of er-cnannel var,
Shlft parameters' U] ~ values seen during training shape is D

Y, B D e
Rk 2V ,u] N lized

_ _ Tij = ormalized X,
During testing batchnorm ’ o2 +oe Shape is N x D
becomes a linear operator! J
Can be fused with the previous . A Output,

fully-connected or conv layer Yij = Vi%ij + 6j Shape is N x D

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 82 April 24, 2018




Batch Normalization [loffe and Szegedy, 2015]

|

FC Usually inserted after Fully
BlN _ Connected or Convolutional layers,
and before nonlinearity.

tanh A topic of debate

FC

BN

(k) _ E[(k)
~(k) _ o ]
v/ Var[z(F)]

tanh

Fei-Fei, Krishna, Xu Lecture 7 - 83 April 28, 2020



Batch Normalization [loffe and Szegedy, 2015]

|

FlC - Makes deep networks much easier to train!
BN - Improves gradient flow
- Allows higher learning rates, faster convergence
tanh - Networks become more robust to initialization
‘, - Acts as regularization during training
FC - Zero overhead at test-time: can be fused with conv!
BlN - Behaves differently during training and testing: this

IS a very common source of bugs!

tanh

Fei-Fei, Krishna, Xu Lecture 7 - 84 April 28, 2020



Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
x: N x D X: NXxXCxHxW
Normalize l Normalize l l l
M,0: 1 x D M,0: 1xCx1lxl
Y,B: 1 x D Y,B: 1IxCx1lxl
y = Y(x-y)/o+p y = Y(x-M)/o+p

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 85 April 24, 2018



Layer Normalization

Batch Normalization for
fully-connected networks

Layer Normalization for
fully-connected networks

Same behavior at train and test!
Can be used in recurrent networks

X: N x D X: N x D
Normalize l Normalize l
M,0: 1 x D M,0: N x 1
Y,p: 1 x D Y,B: 1 x D

Ba, Kiros, and Hinton, “Layer Normalization”, arXiv 2016

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 86 April 24, 2018




Instance Normalization

Batch Normalization for Instance Normalization for
convolutional networks convolutional networks
Same behavior at train / test!
X: NXCxHxW X: NXCxHxW
Normalize l l l Normalize l l
M,o: 1xCx1lxl M,0: NxCx1lxl
Y,B: 1xCx1lxl Y,B: 1xCx1lxl

y = Y(x-M)/0+B y = Y(x-M)/0+B

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - 87 April 24, 2018



Comparison of Normalization Layers

Batch Norm Layer Norm Instance Norm

H, W
LA S
ey

H,W
H,W

LN

L
AV AN

LT T T T 7
N T

N T
A
FA

Wu and He, “Group Normalization”, ECCV 2018
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* pis a hyperparameter.

* Set p (e.g. 10%) hidden nodes to zero.
* Type of regularization.

Dropout

(b) After applying dropout.
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Dropout in ConvNet

activation map

__— 32x32x3 image

5x5x3 filter
= /'4 )
i>@ = 7y

convolve (slide) over all
spatial locations ' '

32 28

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 5 - 68 April 21, 2019



Dropout in ConvNet

activation maps

32

Convolution Layer

32

3

We stack these up to get a “new image” of size 28x28x0!
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CNN Architectures



ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30 28.2
152 layers| |152 layers| |152 layers

25
20

16.4
15

11.7 19 layers| |22 layers
10
1.3 6.7
E i 36 - |
8 layers 8 layers / ,
vers | N 3 23

E =

. ko
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez &  Krizhevsky etal  Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet) (ResNet) (SENet)
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Case Study: AlexNet " 33[:’ :?]N INAN
[Krizhevsky et al. 2012] ”m A\ e _ AN ] ><><
-------- (== "mAll

192 192 128 Max

Max Max pooling
pooling pooling

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad O
[27x27x96] MAX POQOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORMZ2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOLS3: 3x3 filters at stride 2 - L2 weight decay 5e-4
[4096] (.6 4096 neurons -7 CNN ensemble: 18.2% -> 15.4%
[4096] 4096 neurons el R

[1 OOO] 1 OOO neurons (CIaSS SCOI‘eS) Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

2048 2048

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
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| Softmax
| FC 1000
| FC 4096
| FC 4096
|

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

l Softmax
| FC 1000
| FC 4096
l
1

Pool

FC 4096

Pool

Small filters, Deeper networks

8 layers (AlexNet) - ——
-> 16 - 19 layers (VGG16Net) C e

l FC 4096 ]

L FC 4096 ] | Pool | | Pool |
Only 3x3 CONYV stride 1, pad 1 -
and 2x2 MAX POOL stride 2 — = 1 ]
11.7% top 5 error in ILSVRC’13 (ZFNet) — =
-> 7.3% top 5 error in ILSVRC’14 —— SENNNNNNNS S

AlexNet VGG16 VGG19
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| Softmax |
l FC 1000 ]
l FC 4096 ]
l ]
| ]

Case Study: VGGNet

[Simonyan and Zisserman, 2014] o8 FC 1000

l ]
l ]
fc7 | FC 4096 |
l ]
| ]

FC 4096

Pool

fc6 FC 4096

Pool

D eta | IS conv5-3
- ILSVRC'14 2nd in classification, 1st in convs 1
localization 1
- Similar training procedure as Krizhevsky = o
FC 1000 | conv4-2
20 1 2 fc7 | FC 4096 | conv4-1
- No Local Response Normalisation (LRN) = e
- Use VGG16 or VGG19 (VGG19 only convs conva-
Sli htl b tt conva | Pool ] l Pool |
ghtly better, more memory) C 0 v
- Use ensembles for best results convsl e | |
. Pool Pool Pool
- FCY7 features generalize well to other conv2 comvi-2
convi conv1-1
taSkS | Input | | Input | 1 Input |
AlexNet VGG16 VGG19
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Case Study: GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- |LSVRC’14 classification winner

(6.7% top S error) j } g
- 22 layers o
- Only 5 million parameters! Pt Lo

12X less than AlexNet Inception module
27x less than VGG-16

- Efficient “Inception” module

- No FC layers
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Case Study: GooglLeNet

[Szegedy et al., 2014]

“Inception module”: design a
good local network topology
(network within a network) and
then stack these modules on
top of each other

Inception module
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Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

;

Stem Network:
Conv-Pool-
2x Conv-Pool
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Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

B

Stacked Inception
Modules

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 - 87 May 5, 2020



Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

Classifier output
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Case Study: GooglLeNet

[Szegedy et al., 2014]

AvgPool
HxWxc 9 >

1x1xc

Full GooglLeNet
architecture

|

Note: after the last convolutional layer, a global
average pooling layer is used that spatially averages
across each feature map, before final FC layer. No
longer multiple expensive FC layers!

Classifier output
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Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

Bl i}

g W W

Auxiliary classification outputs to inject additional gradient at lower layers
(AvgPool-1x1Conv-FC-FC-Softmax)
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Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GooglLeNet
architecture

22 total layers with weights
(parallel layers count as 1 layer => 2 layers per Inception module. Don’t count auxiliary output layers)
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Case Study: GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module } } 3
- Avoids expensive FC layers ooy
- 12x less params than AlexNet -

- 27x less params than VGG-16 Inception module

- |LSVRC’14 classification winner
(6.7% top 5 error)
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Softmax

Case Study: ResNet =

[He et al., 2015] | iiiigﬂiii\D
| | —
Very deep networks using residual F(X) + X T reld e s
connections @ %D
- 152-layer model for ImageNet X | iiiiiﬁi_jgb
- ILSVRC’15 classification winner e ‘re'“ identity | gxgco?v,zg ™
(3.57% top 5 error) ——
- Swept all classification and ——
detection competitions in X e
ILSVRC’15 and COCQO’15! Residual block e
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Case Study: ResNet

[He et al., 2015]

What happens when we continue stacking deeper layers on a “plain” convolutional
neural network?

56-layer
56-layer

Training error
Test error

lterations lterations

56-layer model performs worse on both training and test error
-> The deeper model performs worse, but it's not caused by overfitting!
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Case Study: ResNet

[He et al., 2015]
Fact: Deep models have more representation power
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem,
deeper models are harder to optimize
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Case Study: ResNet

[He et al., 2015]

Fact: Deep models have more representation power
(more parameters) than shallower models.

Hypothesis: the problem is an optimization problem, H(x)
deeper models are harder to optimize !
What should the deeper model learn to be at least "™ “

as good as the shallower model? ‘relu relu
A solution by construction is copying the learned T T
layers from the shallower model and setting X X

additional layers to identity mapping.
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Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

T elu |dentity mapping:
H(x) H(x) = F(x) + X @ H(x) =xifF(x)=0
X
relu i ‘ relu identity

T

X X
“Plain” layers Residual block
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Case Study: ResNet

[He et al., 2015]

Solution: Use network layers to fit a residual mapping instead of directly trying to fit a
desired underlying mapping

o H(X)=F(X) +x ~

H(x) H(x) = F(x) + x @

|dentity mapping:
el H(x) = x if F(x) = 0

Use layers to

X fit residual
relu F(x) ‘relu identity F(x) = H(x) - x
instead of
T H(x) directly
X X
“Plain” layers Residual block
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Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

relu

identity

Residual block

Softmax

£C 1000

Pool

3x3 conv, 512

3x3 cony, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

Fei-Fei Li, Ranjay Krishna, Danfei Xu Lecture 9 -

3x3 conv, 128, /2

3x3 Conv. 64

3x3 conv, 64

3x3 Conv. 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool

[Input |

May 5, 2020



Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers
- Periodically, double # of
filters and downsample
spatially using stride 2
(/2 in each dimension)
Reduce the activation
volume by half. X
Residual block

relu
F(x) + x

4@_.

F(x) relu

P

X
identity

Softmax

£C 1000

Pool

3x3 conv, 512

3x3 cony, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

Lecture 9 -

3x3 conv, 128, /2

3x3 Conv. 64

3x3 conv, 64

3x3 Conv. 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Pool

[Input |

3x3 conv, 128
filters, /2
spatially with
stride 2

3x3 conv, 64
filters

Fei-Fei Li, Ranjay Krishna, Danfei Xu
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Softmax
FC 1000

Case Study: ResNet

[He et al., 2015]

Pool

|

|

|

| 3x3conv, 512
L__3x3 conv, 512
|

|

|

|

3x3 conv, 512
3x3 conv, 512

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers

I’el u 3x3 conv, 512

3x3 conv, 512, /2

F(x) + x

4@_.

Residual block

3x3 conv, 64
3x3 conv, 64

- Periodically, double # of i —
filters and downsample  F(x) [ P
spatially using stride 2 Identity I e
(/2 in each dimension) N —

- Additional conv layer at e
the beginning (stem) X ot

]
J
J

|
|
|
| 3x3 conv, 64
|
|
|

Pool

«4——— Beginning
[ Inout ] conv layer
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Softmax
FC 1000

«4——— No FC layers
besides FC

Pool

Case Study: ResNet

[ ]
[ )
| J
1000 to
L__3x3conv,512 |
[He et al" 2015] Scoonv bz 1 OIUtPUt
classes
L__3x3conv,512 |
Full ResNet architecture: T | e Global
. reiu L 3x3 conv, 512 | average
- StaCk reS|dua| bIOCkS F(X) + X L_3x3 conv, 512, /2 | poo|ing |ayer
- Every residual block has @ after last
conv layer
two 3x3 conv layers

3x3 conv, 128
3x3 conv, 128

- Periodically, double # of

3x3 conv, 64

(only FC 1000 to output
classes)

[ ]

{ ]

filters and downsample  F(x [ P
spatially using stride 2 Identity I e

(/2 in each dimension)  ——

- Additional conv layer at ——
the beginning (stem) X S

- No FC layers at the end Residual block ————
| J

{ ]

Pool

| Input |

=  (In theory, you can train a ResNet with
input image of variable sizes)
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Case Study: ResNet

[He et al., 2015]

Total depths of 18, 34, 50,
101, or 152 layers for
ImageNet

Fei-Fei Li, Ranjay Krishna, Danfei Xu

Softmax

EC 1000

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128, /2

3x3 conv 64

3x3 conv, 64

3x3 conv. 64

3x3 conv, 64

3x3 conv. 64

3x3 conv, 64

Pool

Input |

Lecture 9 -
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Case Study: ResNet

[He et al., 2015]

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xavier initialization from He et al.

- SGD + Momentum (0.9)

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

-  Weight decay of 1e-5

- No dropout used
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Case Study: ResNet

[He et al., 2015]

Experimental Results
- Able to train very deep
networks without degrading
(152 layers on ImageNet, 1202

MSRA @ ILSVRC & COCO 2015 Competitions

* 1st places in all five main tracks
* ImageNet Classification: “Ultra-deep” (quote Yann) 152-layer nets

on lear) _ * ImageNet Detection: 16% better than 2nd

- Deeper networks now achieve * ImageNet Localization: 27% better than 2nd
lower training error as eXpeCted * COCO Detection: 11% better than 2nd

- Swept 1st place in all LSVRC * COCO Segmentation: 12% better than 2nd

and COCO 2015 competitions

ILSVRC 2015 classification winner (3.6%
top 5 error) -- better than “human
performance”! (Russakovsky 2014)
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ResNet:

Comparing complexity... Moderate efficiency depending on
model, highest accuracy

Inception-v4
80 80 : ,
— Inception-v3 *\, i ResNet-152 |
ResNet-Sog ! ' VGG-16 | VGG-19
L I aNsscescssie: & W Ul S W ResNet-101 7~ 1T T
. ResNet-34 ! i
* 9
= 70 - =70 ResNet-18
5 5 ﬂ
© © GoogLeNet
> = ENet -
S 65 S 65
— —~
5 3 © BN-NIN ‘ _ :
" 60 1 ¥ 60 4 - 5M 35M - 65M-----95M - 125M ---155M
», BN-AlexNet
551 551 AlexNet
50' - 50 T T T T T T - T
$e‘ \\\@ S X%G AG A9 Al S0 ACY (S) \(5 O 0 5 10 15 20 25 30 35 40
P~\e{: \>~\e’* e\\\e C‘) \l6e$ee V\egV\e‘(,\‘\e‘ "\OOQ 00(\ Operations [G-Ops]
) o°° ?~ Qe

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.
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