
AI504: Programming for Artificial Intelligence

Week 13: Graph Neural Networks

Edward Choi
Grad School of AI

edwardchoi@kaist.ac.kr

Index

• Graphs
• Graph Convolution
• Relation with ConvNets

• Graph Neural Networks & Transformer
• Self-attention VS graph convolution

Graphs

Graph

• Data consists of
• Nodes (i.e. Vertices) V
• Edges (i.e. relations) E

Graph

• Data consists of
• Nodes (i.e. Vertices) V

• Could have node-specific features
• Edges (i.e. relations) E

• Could be undirected or directed
• There could be multiple relation types

Graph

• Data consists of
• Nodes (i.e. Vertices) V
• Edges (i.e. relations) E

• Many datasets are graphs
• Facebook friends
• Web documents
• Road networks
• Chemical compounds
• Knowledge bases

Graph Data Examples

• Friends Network
• Nodes are unspecific
• Undirected edges

• Social Network Analysis
• Hot topic since SNS
• Can find influencers
• Can recommend friends

Graph Data Example

• Web documents
• PageRank
• Made Google Search possible
• Unspecific node

• Each webpage is just a node
• Directed edges

• Outgoing links are edges
• Calculated based on random walk.

• The more incoming links,
the more valuable a webpage is!

Graph Data Example

• Chemical structures
• Unspecific duplicate nodes
• Same C (carbon) is used multiple times

• Undirected multi-type edges
• Single bond, double bond

• Hot topic these days
• Drug development
• Toxicity prediction

Graph Data Example
• Knowledge Base
• Multiple node types
• Entity, value

• Directed, multi-type edges
• is_a, parent_of, located_at

• Structured knowledge
• Popular topic
• Knowledge grounded reasoning

Generally Speaking…

• Everything is a graph
• Sequences are a special case of graphs (i.e. directed chains)

A B C D E

Generally Speaking…

• Everything is a graph
• Images are a special case of a graph (i.e. undirected grids)

Graph Convolution

Graph Representation

• How can we represent graphs?
• Images can be represented by ConvNets
• 128x128 RGB image è ResNet è 2048-dimensional feature vector

• Text can be represented by RNN / BERT
• 20 token text è RNN/BERT è 20 contextualized embedding

• Graph?
• Graph è ? è ?

Graph Representation

• How can we represent graphs?
• Images can be represented by ConvNets
• 128x128 RGB image è ResNet è 2048-dimensional feature vector

• Text can be represented by RNN / BERT
• 20 token text è RNN/BERT è 20 contextualized embedding

• Graph?
• Graph with |V| nodes and |E| edges è ? è ?

Graph Representation

• How can we represent graphs?
• Images can be represented by ConvNets
• 128x128 RGB image è ResNet è 2048-dimensional feature vector

• Text can be represented by RNN / BERT
• 20 token text è RNN/BERT è 20 contextualized embedding

• Graph?
• |V| nodes and |E| edges è ? è |V| embeddings (and |E| embeddings)

Why not ConvNet?

• Convolution filters assume same number of neighbors
• General graphs assume no such thing…

VS

Why not ConvNet?

• Convolution filters assume same number of neighbors
• General graphs assume no such thing…

• But we can use the core principle of ConvNet filters
• Aggregate features from the local neighbors

Graph Convolution Principle

Given a graph G = (V, E),
• At each node vi, aggregate all neighbors’ features
• 𝐚! = ∑"!∈𝒜"

𝑓(𝑣%) , where 𝒜!: Set of nodes connected to vi

• Combine vi’s feature with neightbors’ features
• 𝐡! = 𝑔 𝑓 𝑣! , 𝐚!

• hi è Representation of node vi

Graph Convolution Equation

• A: Adjacency matrix

1

2 3

4 5 6

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

Graph Convolution Equation
• A: Adjacency matrix
• X: Node index
• W: Node embedding vector

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

A XW

Graph Convolution Equation

• AXW

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

A XW

× =

f(v2) + f(v3)

f(v1) + f(v4) + f(v5)

f(v1) + f(v4) + f(v6)

f(v2) + f(v3)

f(v2)

f(v3)

AXW

Graph Convolution Equation

• AXW è Is this the node representations H?

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

A XW

× =

f(v2) + f(v3)

f(v1) + f(v4) + f(v5)

f(v1) + f(v4) + f(v6)

f(v2) + f(v3)

f(v2)

f(v3)

AXW

Graph Convolution Equation
• No, AXW is just neighbor aggregation.
• We need the combination step!

0 1 1 0 0 0

1 0 0 1 1 0

1 0 0 1 0 1

0 1 1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

A XW

× =

f(v2) + f(v3)

f(v1) + f(v4) + f(v5)

f(v1) + f(v4) + f(v6)

f(v2) + f(v3)

f(v2)

f(v3)

AXW

Graph Convolution Equation

• New A’ = A + I
• I: Identity matrix

1 1 1 0 0 0

1 1 0 1 1 0

1 0 1 1 0 1

0 1 1 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

A’ = A + I XW

× =

f(v1) + f(v2) + f(v3)

f(v1) + f(v2) + f(v4) + f(v5)

f(v1) + f(v3) + f(v4) + f(v6)

f(v2) + f(v3) + f(v4)

f(v2) + f(v5)

f(v3) + f(v6)

A’XW

Graph Convolution Equation
• A’XW performs neighbor aggregation and combination
• Combination function g is just simple summation.

• A’XW can be node representations H!

1 1 1 0 0 0

1 1 0 1 1 0

1 0 1 1 0 1

0 1 1 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

A’ = A + I XW

× =

h1 = f(v1) + f(v2) + f(v3)

h2 = f(v1) + f(v2) + f(v4) + f(v5)

h3 = f(v1) + f(v3) + f(v4) + f(v6)

h4 = f(v2) + f(v3) + f(v4)

h5 = f(v2) + f(v5)

h6 = f(v3) + f(v6)

A’XW

Graph Convolution Equation
• But there is another problem:
• Scales of node features differ by the number of neighbors!
• h2 can be twice as large as h5!

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

A’ = A + I XW

× =

A’XW

1 1 1 0 0 0

1 1 0 1 1 0

1 0 1 1 0 1

0 1 1 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

h1 = f(v1) + f(v2) + f(v3)

h2 = f(v1) + f(v2) + f(v4) + f(v5)

h3 = f(v1) + f(v3) + f(v4) + f(v6)

h4 = f(v2) + f(v3) + f(v4)

h5 = f(v2) + f(v5)

h6 = f(v3) + f(v6)

Graph Convolution Equation
• D: Degree matrix
• Diagonal matrix where di,I = number of edges

• D-1A’: Normalized adjacency matrix

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

D-1A’ XW

× =

D-1A’XW

h1 = 0.33 * (f(v1) + f(v2) + …)

h2 = 0.25 * (f(v1) + f(v2) + …)

h3 = 0.25 * (f(v1) + f(v3) + …)

h4 = 0.33 * (f(v2) + f(v3) + …)

h5 = 0.5 * (f(v2) + f(v5))

h6 = 0.5 * (f(v3) + f(v6))

.33 .33 .33 0 0 0

.25 .25 0 .25 .25 0

.25 0 .25 .25 0 .25

0 .33 .33 .33 0 0

0 .5 0 0 .5 0

0 0 .5 0 0 .5

Graph Convolution Equation
• One more thing:
• D-1A’XW è All linear operations

• Need non-linearity

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

D-1A’ XW

× =

D-1A’XW

h1 = 0.33 * (f(v1) + f(v2) + …)

h2 = 0.25 * (f(v1) + f(v2) + …)

h3 = 0.25 * (f(v1) + f(v3) + …)

h4 = 0.33 * (f(v2) + f(v3) + …)

h5 = 0.5 * (f(v2) + f(v5))

h6 = 0.5 * (f(v3) + f(v6))

.33 .33 .33 0 0 0

.25 .25 0 .25 .25 0

.25 0 .25 .25 0 .25

0 .33 .33 .33 0 0

0 .5 0 0 .5 0

0 0 .5 0 0 .5

𝜎() 𝜎()

Graph Convolution Equation

• 𝑯 = 𝜎 𝑫!"𝑨′𝑿𝑾
• A’ = A + I
• D = Degree matrix
• 𝜎 = Non-linear activation
• W = Learnable parameters

Graph Convolution Equation

• 𝑯(𝟏) = 𝜎 𝑫!"𝑨′𝑿𝑾
• This is aggregating neighbors just 1-hop away

1

2 3

4 5 6

1

2 3

4 5 6
5+24+2+3 6+3

3+1+4+62+1+4+5

1+2+3

Graph Convolution Equation

• 𝑯(𝟏) = 𝜎 𝑫!"𝑨′𝑿𝑾
• This is aggregating neighbors just 1-hop away
• How do we aggregate neighbors 2-hops away?

Graph Convolution Equation

• How do we aggregate neighbors 2-hops away?
è𝑯(𝟐) = 𝜎 𝑫!"𝑨′𝑯(𝟏)𝑾(𝟐)

1

2 3

4 5 6
5+24+2+3 6+3

3+1+4+62+1+4+5

1+2+3 1

2 3

4 5 6
5+2+2+1+4+5… …

……

…

Graph Convolution Equation

• How do we aggregate neighbors k-hops away?
è𝑯(𝒌) = 𝜎 𝑫!"𝑨′𝑯(𝒌!𝟏)𝑾(𝒌)

Graph Convolution Variations

• Different normalization
• 𝑯(𝒌) = 𝜎 𝑫)*/,𝑨′𝑫)*/,𝑯(𝒌)𝟏)𝑾(𝒌)

• Motivated by spectral graph convolution
• Whole theory regarding graph laplacian…

• Different Combination step
• Instead of summation 𝑔 𝑓 𝑣! , 𝐚! = 𝑓 𝑣! + 𝐚!,
• Use linear layer 𝑔 𝑓 𝑣! , 𝐚! = W 4 𝑓 𝑣! ; 𝐚!

• Nodes become RNNs
• More sophisticated way to accumulate N-hop information

• Many more variations è Called Graph Neural Networks (GNN)

Semi-Supervised Classification with Graph Convolutional Networks (https://arxiv.org/pdf/1609.02907.pdf)
How Powerful are Graph Neural Networks? (https://openreview.net/pdf?id=ryGs6iA5Km)

GNN & Transformer

Attention is All You Need

• Vaswani et al. 2017
• Let’s use only attentions to handle sequences.

Self-Attention

•

38

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑸,𝑲, 𝑽 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑸𝑲.

𝑑
𝑽

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑸,𝑲, 𝑽𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑸𝑲.

𝑑
𝑽

Graph Convolution

• 𝑯(𝒌) = 𝜎 𝑫!"𝑨′𝑯(𝒌!𝟏)𝑾(𝒌)

1

2 3

4 5 6

f(v1)

f(v2)

f(v3)

f(v4)

f(v5)

f(v6)

D-1A’ XW

× =

D-1A’XW

h1 = 0.33 * (f(v1) + f(v2) + …)

h2 = 0.25 * (f(v1) + f(v2) + …)

h3 = 0.25 * (f(v1) + f(v3) + …)

h4 = 0.33 * (f(v2) + f(v3) + …)

h5 = 0.5 * (f(v2) + f(v5))

h6 = 0.5 * (f(v3) + f(v6))

.33 .33 .33 0 0 0

.25 .25 0 .25 .25 0

.25 0 .25 .25 0 .25

0 .33 .33 .33 0 0

0 .5 0 0 .5 0

0 0 .5 0 0 .5

Transformer & Graph Networks

• Graph Networks

•

• Transformer

•

40

Transformer & Graph Networks

• Graph Networks

•

• Transformer

•

41

Adjacency Matrix Self-Attention

Transformer & Graph Networks

• Graph Networks

•

• Transformer

•

42

Node Embedding Token Embedding

Self-Attention VS Graph Convolution

• Self-attention
• Don’t know graph structure
• Assum (implicitly) fully-connected graph

• Learn edge weights during training
• Learn node embeddings in a data-driven fashion

• Graph convolution
• Prior knowledge on graph structure
• Learn node embeddings based on the fixed adjacency matrix

Transformer instead of GNN?

• Learn the edge weights with attention
• Zero-out the probability of non-connected edges

• Mask QK/sqrt(d) with negative infinity matrix
• Graph Attention Network (https://arxiv.org/pdf/1710.10903.pdf)

• Learning the structure of graphs with attention
• Use self-attention to learn the underlying graph structure
• Start with a prior knowledge driven adjacency matrix, then gradually evolve

with self-attention
• Prior knowledge: conditional probability between pairs of nodes

• Graph Convolutional Transformer (https://arxiv.org/pdf/1906.04716.pdf)

https://arxiv.org/pdf/1710.10903.pdf
https://arxiv.org/pdf/1906.04716.pdf

Chemical Structures
• AlphaFold

• COVID-19

45Beck, B.R., Shin, B., Choi, Y., Park, S. and Kang, K., 2020. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model.
Computational and structural biotechnology journal, 18, pp.784-790.

AI504: Programming for Artificial Intelligence

Week 13: Graph Neural Networks

Edward Choi
Grad School of AI

edwardchoi@kaist.ac.kr

