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Today’s Topic

• Generative Autoencoder

• Variational Inference

• Variational Autoencoder

• Training VAE
• Reparametrization Trick



Generative Autoencoder



Autoencoder

• Consists of Encoder and Decoder

Encoding (Compression) Decoding (Decompression)

Code , Latent Variables, Latent Representation
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Autoencoder

• Mean Squared Error (MSE) loss
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• Encoding

• z = f(W1x+b1)

• Decoding

• x’= f(W2z+b2)

• Loss
• ℒ x, x′ = x − x′ 2
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Autoencoder

• Compression
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Information Bottleneck

Need to pack all information in 4-D
➔ Need to learn some useful hidden features
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Latent Representations
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Latent Representation

• Digits are compressed to a 4-D space.



Generating Samples

• How can we generate new samples?



Generating New Samples

• Perturb an existing z?

Perturb this sample to
generate new images of 1?



Generating New Samples

• Sample from a region?

Sample random points from
this area to generate images of 1?



Generating New Samples

• Generating new samples
• Perturb a known z

• Sample from a region
• Which region do you sample?

• Both are not guaranteed to work



Example: Perturbing z
• Using an AE trained on MNIST for 50 epochs.

True 9

Reconstruction

Perturbed z

Noise ~ N(0, 0.5) Noise ~ N(0, 1.0)



Example: Perturbing z
• Cannot generate diverse/novel samples 

True 9

Reconstruction

Perturbed z

Noise ~ N(0, 0.5) Noise ~ N(0, 1.0)



Variational Inference



Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X

• We are interested in the value 
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Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X

• We are interested in the value 

• Ex) Topic (Z) of newpaper articles (X)

• Ex) Latent representations (Z) of MNIST images (X)



Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X

• We are interested in the value 

• Usually, a true posterior distribution in intractable
• Using Bayesian principle,



Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X

• We are interested in the value 

• Usually, a true posterior distribution in intractable
• Using Bayesian principle,

This is often combinatorially large (even infinite!)



Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X

• We are interested in the value 

• Usually, a true posterior distribution in intractable
• Using Bayesian principle,

• Instead, approximate with a simpler function Q (often Gaussian)! 



Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• Note that DKL is not symmetric (i.e. it is not a distance!)

• This formulation is called “Reverse KL”

(Assuming Z is a discrete variable)
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• Minimize Kullback-Leibler divergence (KL-Divergence)
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Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• Maximizing the ELBO leads to minimizing DKL

• Because ??

: Evidence Lower Bound (ELBO)



Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• Maximizing the ELBO leads to minimizing DKL

• Because log P(X) is fixed.

: Evidence Lower Bound (ELBO)



Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• Maximizing the ELBO leads to minimizing DKL

• We converted an inference problem to an optimization problem!
• For Gaussian Q, we can learn 𝜇 and 𝜎.

: Evidence Lower Bound (ELBO)



Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• is also called  “variational free energy”

: Evidence Lower Bound (ELBO)

ℒ(𝑄) = 𝔼Z log 𝑃(𝐙, 𝐗) + 𝐻(𝑄) (H: Information Entropy)



Variational Autoencoder



VAE

• Objective
• Compress x to z which follows P(Z | X)

• Decompress z to reconstruct x

Encoding (Compression) Decoding (Decompression)

This follows the distribution P (e.g. Gaussian)
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VAE

• Objective
• Compress x to z which follows P(Z | X)

• Decompress z to reconstruct x

Decoding (Decompression)

This follows the distribution P (e.g. Gaussian N(0, 1))
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VAE

• Objective
• Compress x to z which follows P(Z | X)

• Decompress z to reconstruct x

• This allows us to
• Map data distribution P(X) to a probability distribution P(Z)

• Sample z from P(Z), which can be converted to x

Decoding (Decompression)

This follows the distribution P (e.g. Gaussian)
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VAE Loss

• Loss consists of
• Reconstruction loss

• Regularization term
• Force z to follow Gaussian distribution

• Loss for a single sample 𝑥𝑖

• In autoencoders, negative log likelihood is reconstruction loss

Encoder network
parametrized by 𝜃

Decoder network
parametrized by 𝜙

Usually
𝒩 0, 1

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/


VAE: Probability Point of View

• We want to infer P(Z | X)

• The posterior distribution given data X



VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• Use Q𝜆(Z | X) instead of Q(Z)

• Because Z is determined by X

• This will be our encoder

• 𝜆 is 𝜇, 𝜎 for Gaussian Q➔ Encoder generates 𝜇, 𝜎

(Original VI)



VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• Use Q𝜆(Z | X) instead of Q(Z)

• Because Z is determined by X

• This will be our encoder

• 𝜆 is 𝜇, 𝜎 for Gaussian Q➔ Encoder generates 𝜇, 𝜎

• We want to learn an encoder 

(Original VI)



VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• The new ELBO term

(Original VI)

(Original ELBO)



VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• The new ELBO term

ELBO term for each sample 𝑥𝑖



ELBO Term

• ELBO term for each 𝑥𝑖

• Parametrize the components
• Approximate posterior q with 𝜃

• Likelihood p with 𝜙

• The parametrized ELBO term 



ELBO Term

• ELBO term for each 𝑥𝑖

• Parametrize the components
• Approximate posterior q with 𝜃

• Likelihood p with 𝜙

• The parametrized ELBO term 

Remind you of something??



ELBO Term

• ELBO term for each 𝑥𝑖

• Parametrize the components
• Approximate posterior q with 𝜃

• Likelihood p with 𝜙

• The parametrized ELBO term 



ELBO Term

• The parametrized ELBO term 

• Maximizing the ELBO is equivalent to minimizing the loss!

VAE ELBO is the negative loss!!



ELBO Term

• The parametrized ELBO term 

• Maximizing the ELBO is equivalent to minimizing the loss!

• ELBO can be maximized by both
• Updating the encoder network (i.e. learning 𝜃)

• Updating the decoder network (i.e. learning 𝜙)



ELBO Term

• The parametrized ELBO term 

• Maximizing the ELBO is equivalent to minimizing the loss!

• ELBO can be maximized by both
• Updating the encoder network (i.e. learning 𝜃)

• Updating the decoder network (i.e. learning 𝜙)

• In practice, update both params together.



Training VAE



Training VAE

• Loss function

• How do you train your network?



Training VAE

• Loss function

• Using a random sample 𝑥𝑖 as an example:
• Push 𝑥𝑖 into the encoder 

• Obtain 𝜇𝑖, 𝜎𝑖
• Sample (many) 𝑧𝑖 from 𝒩 𝜇𝑖, 𝜎𝑖 ➔ Monte Carlo Estimation of Ez[f(z)]

• Insert 𝑧𝑖 into the decoder

• Obtain 𝑥𝑖
′

• Calculate squared error 𝑥𝑖
′ − 𝑥𝑖

2
and 𝐷𝐾𝐿(𝒩 𝜇𝑖, 𝜎𝑖 ||𝒩 0,1 )

• Backpropagate

• Update 𝜃 and 𝜙



Training VAE

• Loss function

• Using a random sample 𝑥𝑖 as an example:
• Push 𝑥𝑖 into the encoder 

• Obtain 𝜇𝑖, 𝜎𝑖
• Sample (many) 𝑧𝑖 from 𝒩 𝜇𝑖, 𝜎𝑖 ➔ Monte Carlo Estimation of Ez[f(z)]

• Insert 𝑧𝑖 into the decoder

• Obtain 𝑥𝑖
′

• Calculate squared error 𝑥𝑖
′ − 𝑥𝑖

2
and 𝐷𝐾𝐿(𝒩 𝜇𝑖, 𝜎𝑖 ||𝒩 0,1 )

• Backpropagate

• Update 𝜃 and 𝜙

This has an analytical expression,

which can be used to update 𝜃

1

2
(𝜇𝑖

2 + 𝜎𝑖
2 − log𝜎𝑖

2−1)



Training VAE

• Loss function

• Using a random sample 𝑥𝑖 as an example:
• Push 𝑥𝑖 into the encoder 

• Obtain 𝜇𝑖, 𝜎𝑖
• Sample (many) 𝑧𝑖 from 𝒩 𝜇𝑖, 𝜎𝑖 ➔ Monte Carlo Estimation of Ez[f(z)]

• Insert 𝑧𝑖 into the decoder

• Obtain 𝑥𝑖
′

• Calculate squared error 𝑥𝑖
′ − 𝑥𝑖

2
and 𝐷𝐾𝐿(𝒩 𝜇𝑖, 𝜎𝑖 ||𝒩 0,1 )

• Backpropagate

• Update 𝜃 and 𝜙

How about this?



Stochasticity in the Network

• 𝑥𝑖
′ − 𝑥𝑖

2
involves a random sample 𝑧𝑖

• 𝑥𝑖
′ is decoded based on 𝑧𝑖~𝒩 𝜇𝑖, 𝜎𝑖

• One can backpropagate through the decoder.
• Consider 𝑧𝑖 as an input to the decoder

• We can obtain 
𝜕ℒ

𝜕𝜙
via chain-rule  (ℒ = MSE Loss)
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Stochasticity in the Network

• Can you backpropagate through the encoder to obtain 
𝜕ℒ

𝜕𝜃
?

• How would you get past the randomly sampled 𝑧𝑖?

: Deterministic Node

: Random Node

~𝒩 𝜇, 𝜎



Reparametrization Trick

• Can you backpropagate through the encoder to obtain 
𝜕ℒ

𝜕𝜃
?

• How would you get past the randomly sampled 𝑧𝑖?

~𝒩 𝜇, 𝜎 = 𝜇 + 𝜎 ∗ 𝜀

: Deterministic Node

: Random Node



Reparametrization Trick

• Can you backpropagate through the encoder to obtain 
𝜕ℒ

𝜕𝜃
?

• How would you get past the randomly sampled 𝑧𝑖?

~𝒩 𝜇, 𝜎

Reparametrization Trick:
Randomness is removed from the backprop path.

: Deterministic Node

: Random Node

= 𝜇 + 𝜎 ∗ 𝜀



The Big Picture

• The entire flow chart

http://gregorygundersen.com/blog/2018/04/29/reparameterization/

𝜙

𝜃

http://gregorygundersen.com/blog/2018/04/29/reparameterization/


Training Process

• Training VAE on MNIST images
• Plotting 2-dimensional z for each encoded image as training proceeds
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Image Generation

• Sample z from 2-dimensional space then decode.
• Range [-3, 3] for both axes.
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Conclusion

• VAE is an elegant solution for approximating P(Z | X)
• It is still an approximation though
• The two mapping functions are disconnected

• Encoder and decoder use separate parameters

• Normalizing Flow
• Use invertible functions to map between p(X) and p(Z)

• 𝛽-VAE, TC-VAE
• Disentangling the latent space
• We want each z dimension to have an interpretable role.

• Rotation of the image, skewedness of the image, color of the image, etc.

• You can use VAE to generate sequences or graphs.
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