
AI504: Programming for Artificial Intelligence

Week 14: Deep Diffusion Probabilistic Model

Edward Choi
Grad School of AI

edwardchoi@kaist.ac.kr

Today’s Topic
• Generative models recap
• Deep diffusion probabilistic model (DDPM)
• Deep diffusion implicit model (DDIM)
• Classifier-guided diffusion

Generative Models Recap

VAE
• Objective
• Compress x to z which follows P(Z | X)
• Decompress z to reconstruct x

Decoding (Decompression)

This follows the distribution P (e.g. Gaussian N(0, 1))

-1.2

3.1

0.2

-0.9

Encoding (Compression)

Flow-based Models
• Consistent mapping between x and z

• Overcomes the limitation of VAE
• Must use (a sequence of) invertible functions only
• Can be trained via log-likelihood (no variational inference)

Generative Adversarial Network
• Generator (G)
• Tries to fool D with fake samples x’

• Discriminator (D)
• Tries to discriminate between real samples x and fake samples x’

Autoregressive Models
• Pixel-CNN
• Generate images one pixel at a time.

• WaveNet
• Generate audio one frame at a time

• GPT-3
• Generate text one word at a time

• DALL-E 1
• Generate one visual “code" at a time

PixelCNN generates one pixel at a time

https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173

https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173

Diffusion
• Gradually add/remove noise

• Can be seen as a multi-step VAE
• Bayes rule, variational inference, reparameterization trick…

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Comparison Overview

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

DDPM

Diffusion

• Forward process
• Keep adding noise to the original data 𝐱!~𝑝"#$# → 𝐱%~𝒩(0, 𝐼) when 𝑇 → ∞

• Reverse process
• Remove noise from 𝐱% → 𝐱!

• Both processes are Markov chains
• 𝐱$ is determined only by 𝐱$&'

Forward Process

• Use conditional Gaussian distribution
• 𝛽!: variance schedule
• Can be learned, or can be fixed
• DDPM uses scheduled constants ()

: real data distribution

,

Forward Process

: real data distribution

,

Summary: We can convert any sample to 𝒩(0, 𝐼) without learnable parameters
by repeatedly adding small Gaussian noise

Forward Process

One-step probability distribution

Joint probability distribution

Creating 𝐱! straight from 𝐱"
where

As 𝑇 → ∞: &𝛼! → 0 and 𝑞 𝐱!|𝐱" → 𝒩(0, 𝐼)

Forward Process
• Creating 𝐱! straight from 𝐱"
• We don’t have to repeatedly apply noise to get 𝐱!!
• We will use this during training

+ =(*) Note that

= 𝛼! 𝛼!"#𝐱!"$ + 1 − 𝛼!"#𝝐!"$ + 1 − 𝛼!𝝐!"#
= 𝛼! 𝛼!"#𝐱!"$ + 𝛼! 1 − 𝛼!"#𝝐!"$ + 1 − 𝛼!𝝐!"#
= 𝛼!𝛼!"#𝐱!"$ + 𝛼! 1 − 𝛼!"# 𝝐!"$ + 1 − 𝛼!𝝐!"#

∴

Reverse Process

• How do we “denoise” a noisy sample i.e., 𝑞 𝐱!*+|𝐱! ?
• We don’t know the distribution of all images!

• We use a neural network to approximate

Note: 𝑝1 𝐱!23|𝐱! can be modeled as a Gaussian,
because 𝑞 𝐱!23|𝐱! is Gaussian when 𝛽! is small enough

Reverse Process
• If we can learn 𝑝, 𝐱!*+|𝐱! :
• We can sample from 𝒩(0, 𝐼), and “denoise” it to a real sample

• But how do we train 𝑝, 𝐱!*+|𝐱! ?
𝐿%&&

(∵ Jensen’s inequality)

Another way to derive variational lower bound

Reverse Process
• If we can learn 𝑝, 𝐱!*+|𝐱! :
• We can sample from 𝒩(0, 𝐼), and “denoise” it to a real sample

• But how do we train 𝑝, 𝐱!*+|𝐱! ?
𝐿'((

Further break down of 𝐿.// to reduce variance

Should be
𝑝 𝐱! Separate treatment to avoide edge effect

Further break down of 𝐿.// to reduce variance

This term can be written as a Gaussian distribution.
We will revisit this later

𝑞 𝐱!|𝐱!#$ = 𝑞 𝐱!|𝐱!#$, 𝐱" = 𝑞 𝐱!#$|𝐱! , 𝐱"
𝑞 𝐱!|𝐱"
𝑞 𝐱!#$|𝐱"

Further break down of 𝐿.// to reduce variance

Terms cancel each other out

Looking at Each Term

Fixed process,
nothing to learn This is actually just 𝒩(0, 𝐼)

Therefore we can ignore 𝐿6

𝐿!"# = 𝐷$% 𝑞 𝐱!"#|𝐱!, 𝐱& ||𝑝' 𝐱!"#|𝐱! for 2 ≤ 𝑡 ≤ 𝑇

Looking at Each Term

This is the edge case.
Ho et al. models this with a separate decoder derived from

𝐿!"# = 𝐷$% 𝑞 𝐱!"#|𝐱!, 𝐱& ||𝑝' 𝐱!"#|𝐱! for 2 ≤ 𝑡 ≤ 𝑇

Looking at Each Term

This is a KL divergence between two Gaussian distributions

Why this form of Gaussian distribution?

𝐿!"# = 𝐷$% 𝑞 𝐱!"#|𝐱!, 𝐱& ||𝑝' 𝐱!"#|𝐱! for 2 ≤ 𝑡 ≤ 𝑇

𝐿!"# = 𝐷$% 𝑞 𝐱!"#|𝐱!, 𝐱& ||𝑝' 𝐱!"#|𝐱! for 2 ≤ 𝑡 ≤ 𝑇

Modeling 𝑞 𝐱!*+|𝐱! , 𝐱" as Guassian Distrubiton

Some function
not involving 𝐱"#$

Considering that

Need to understand how this is derived

From p.15

Looking at Each Term
𝐿!"# = 𝐷)(𝑞 𝐱!"#|𝐱!, 𝐱* ||𝑝+ 𝐱!"#|𝐱! for 2 ≤ 𝑡 ≤ 𝑇

Simpler Loss Function
• Ho et al. 2020 empirically found that a simplied loss function works

better

VS
Need to sum 𝐿! over 1 ≤ 𝑡 ≤ 𝑇 − 1
But now instead uniform sampling

Training & Sampling Algorithm

* Need to train seprate decoder for 𝐿*

Generation Samples

Generation Samples

Improved DDPM
• Nichol et al. 2021
• Improved formulation & training than vanilla DDPM

• Covariance matrix as an interpolation between 𝛽! and :𝛽!

Let’s learn a diagonal covariance matrix instead!

where

Generalized DDPM (DDIM)

Generalized DDPM
• DDPM suffers from slow generation
• Must go through thousands of steps to get high-quality samples

• What if we generalized DDPM to non-Markovian?
• Turns out that we can use pretrained DDPM with two benefits

1. We can perform deterministic sampling (DDIM)
2. We can take multiple steps during sampling (accelerated sampling)

“For example, it takes around 20 hours to sample 50k images of size 32 × 32 from a DDPM,
but less than a minute to do so from a GAN on an Nvidia 2080 Ti GPU.”, (Song et al. 2020)

Core Idea
• Non-Markovian forward process

• Reverse process

where

This guarantees

Note that from here on, 𝛼! = &𝛼!

(Same as DDPM in p.15)

where

Properties of Generalized DDPM
• Training objective

Happens to optimize the same loss as DDPM

Therefore, no need to train new model.
è Can use a pre-trained DDPM

Sampling Process
• Sampling formula

Accelerated Sampling

• Non-Markovian property allows “skipped” sampling
• 𝜏< is the index number at which we perform a reverse process

Comparison
• DDPM vs DDIM

Guided Sampling

Classifier-guided Sampling
• We want to sample class-specific, high-quality samples

• A new forward process .𝑞 𝐱!;+|𝐱! , y

• Then, unknown reverse process .𝑞 𝐱!|𝐱!;+, y becomes

• So we model the neural network

(complex derivation omitted)

Conditional Reverse Process

Classifer-guided Sampling Algorithm

Need to train
this separately
with noisy samples

Classifier-guided DDIM
• Connection with Noise-Conditioned Score Matching (NCSM)
• Sampling via Langevin dynamics

• Iteratively follow the gradient of the log probability
•
• Song & Ermon 2019 improved it to

• Train neural network to learn scores for samples with different levels of noise
• Increasing noise level <==> DDPM forward process

Classifier-guided DDIM
Note that

Joint distribution of the score function:

New classifer-guided noise predictor:

Classifier-free Guidance
• Class-conditioned diffusion without pre-trained classifier
• From NCSM-DDPM

• Assume an implicit classifier

• From Classifier-guided DDIM

= =

Classifier-free Guidance

• Guided noise is a linear combination of conditioned/unconditioned noise
• We can train both and with a single neural network
• Train with a null class (i.e. random sample) 10% of the training time

•

Classifier-free Guidance

Classifier-free Guidance

Classifier-free Guidance

AI504: Programming for Artificial Intelligence

Week 14: Deep Diffusion Probabilistic Model

Edward Choi
Grad School of AI

edwardchoi@kaist.ac.kr

Variational Lower Bound

Note VAE objective:

Return

