Al504: Programming for Artificial Intelligence

Week 6: Generative Adversarial Networks

Edward Choi
Grad School of Al
edwardchoi@kaist.ac.kr

Today’s Topic

* Generative Adversarial Network

* VAE vs Autoregressive vs GAN (vs Diffusion)
* Evaluation

* Applications of GAN

Generative Adversarial Network

VAE Recap

* Objective
* Compress x to z which follows P(Z | X)

* Decompress z to reconstruct x

-1.2
Encoding (Compression) Decoding (Decompression)

qo(z | @) pg(zi | 2)

1

This follows the distribution P (e.g. Gaussian N(0, 1))

KIL(go(z | z:) || p(2))

VAE Recap

* This allows us to
e Learn approximate posterior Q(Z|X) to mimic the true P(Z|X)
* Sample z from Q(Z.), which can be converted to x

0.14

— P(X)
0.12 — Q(X)
0.10
0.08
0.06

0.04

0.02

https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/

https://wiseodd.github.io/techblog/2016/12/21/forward-reverse-kl/

Another Generative Model Family

* Pixel-CNN

* Generate images one pixel at a time.

* WaveNet
e Generate audio one frame at a time

* GPT-3
 Generate text one word at a time

* DALL-E 1

* Generate one visual “code" at a time

PixelCNN generates one pixel at a time

https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173

https://towardsdatascience.com/auto-regressive-generative-models-pixelrnn-pixelcnn-32d192911173

Autogressive Models

* Pixel-CNN A
* Generate images one pixel at a time.
* WaveNet
* Generate audio one frame at a time
* GPT-3 |
* Generate text one word at a time po(x) = ﬁpe($i|$1a o Ti—1)
* DALL-E 1 i=1

* Generate one visual “code" at a time Works very well, but slow inference
(sometimes impractically slow)

> Autoregressive Models

Yet Another Generative Model Family

e What if we don’t care about the data distribution?

* What if all we want is just good synthetic samples?

Yet Another Generative Model Family

e What if we don’t care about the data distribution?

* What if all we want is just good synthetic samples?

f

Generator
Network

f

Input: Random noise Z

Output: Sample from
training distribution

http://cs231n.stanford.edu/slides/2017/cs231n 2017 lecturel3.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture13.pdf

Diffusion

e Also doesn’t care about data distribution
e Gradually add/remove noise

Use variational lower bound

Seao_--7

-

* Can be seen as a multi-step VAE
* Bayes rule, variational inference, reparameterization trick...

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

Generative Adversarial Network

* Two person game
 Game between Generator (G) and Discriminator (D)
* Think of game theory

* Generator (G)
* Tries to fool D with fake samples x’
e Discriminator (D)
* Tries to discriminate between real samples x and fake samples x’

Generative Adversarial Network

* Generator (G)
* Tries to fool D with fake samples x’

* Discriminator (D)
* Tries to discriminate between real samples x and fake samples x’

Real or Fake

Dlscrlmlnator Network

Fake Images Real Images
(from generator) | (from training set)

Generator Network

f

Random noise y4

Binary Classification

* GAN objective is basically binary classification

* Two different sub-goals
* For G, fail the binary classification
* For D, succeed the binary classification

Binary Classification

* GAN objective is basically binary classification

* Two different sub-goals
* For G, fail the binary classification
* For D, succeed the binary classification

 Remember Cross Entropy?

1 & . .
~ 2 [yn log §i,, + (1 — yn) log(1 — §,)
n=1

Binary Classification

 Remember Cross Entropy?

— Z [yn log §,, + (1 — yn) log(1 — yn)]

— — y,
Positive Samples Negative Samples
N/2 N/2 . _
T log(1 — Separate positive samples and negative samples.
N Z gyl + 5 Z 0g(Yl (Assuming the same number of positives & negatives)

N/2 N/2

1
N/Z Z log yn] + —+ N/Z [log(1 — yn)]]

=1

)

=3 [IEx“’ppositive log D(x) + Esi~pregacive log(1 — D(x'))] Sample mean is an unbiased estimator of population mean.

Binary Classification

 Remember Cross Entropy?

Ex~ppositive 108D () + Exrp oo avive log(1 — D(x")) Lose the constant 1/2, since our goal is optimization.
= Ey~p, 108D (x) + [Ex'~pfake log(l — D(x’)) Positive VS Negative =» Real VS Fake

= Ey~p, 108D (x) + E,, log (1 — D(G(z))) Fake samples come from random noise p(z) and Generator G.

= Ex~p,,q 108 Do, (x) + E, ., log <1 — Dy, (Ggg (z))) Use parameterized functions for D and G.

Two Different Goals

* For D, succeed the binary classification

max [[Ex~preaz log Dy (x) + E,, log <1 — Dy, (Ggg (z)))]

0d

* For G, fail the binary classification

r%in Ey~p, oo 108 Do, (x) + E,pp log (1 — Dy, (Ggg (z)))]
g 1

= min |E,., log (1 — Dy, (Ggg (Z)))] First term is not concerned with 6.

MinMax Game

* GAN is a two-person MinMax game between D & G

rgign r%:;x l[Ex~preaz log Dy, (x) + E,;, log <1 — Dy, (Ggg (z)))]

Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Theoretically...

* When D & G reaches Nash Equilibrium,

e D’s accuracy is 50% (random guess)
e G(z)’s distribution is the same as p(x)

N N N
D) D) D)

. . .
.
. . RN) .)

'
oy
8 ey
[D)
(%% B

/(YR

(a) (b) ()

VAN

(d)

Modified MinMax Game

* In practice, G doesn’t learn very well.
* G trying to fool D:

ngzn [IEZ~pZ log <1 — Dy, (Ggg (Z)))]

* |In the initial phase, D easily overpowers G
* D(G(z)) will almost always be 0

* The gradient of the above objective becomes zero ‘

3}

When sample is likely |
fake, want tolearn |

from it to improve

generator. But gl
gradient in this region-|

Gradient signal
dominated by region
where sample is
already good

is relatively flat! T

Modified MinMax Game

* Modified G objective:

rré;;x []Ez~pz log (ng (Ggg (Z)))]

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

But no longer MinMax game
=>» No Nash Equilibrium, but probably doesn’t matter

4
3k
2
1

p

High gradignt signal

— log(1-D(G(2)) ||
— —logD(G(2))

4 L
0.0 0.2

7 06 . o5 . Lo
Cow gradient signal

Training GAN

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(%), ..., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(1),... , £(™)} from data generating distribution
pdata(m)-
e Update the discriminator by ascending its stochastic gradient:
1 i i
Vi 2 | 10g Dy, () + og(1 — Dy, (Go, (29)))|
end for
e Sample minibatch of m noise samples {z(*), ..., 2(™)} from noise prior p,(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— .
Vo, ™ 231 log(Dy, (Go, (z(z))))
1=

end for

Training GAN

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {z(1),... , £(™)} from data generating distribution
pdata(m)-
e Update the discriminator by ascending its stochastic gradient:
What'’s the 1 = . .
best value for k? Vo, E Z [108 Deg, (33(%)) =+ log(l — Dy, (Geg (Z(z))))]
i=1
end for
e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior Py(2).

e Update the generator by ascending its stochastic gradient (improved objective):
1 «— .
Vi, — 231 log(De,(Ge, (7))
1=

end for

When to Stop Training

* There is no golden rule

* Because D and G oscillates, we never reach Nash Equilibrium.
* We use the modified G loss, so no Nash Equilibrium anyway.

e Typical way

* Generate fake samples from time to time.

* If there is no visual improvement, stop training.
* You can use evaluation metric (FID score) as well.

* Use GAN variants
* Ex) Wasserstein GAN provides a more indicative G loss.

Generating Fake Samples

* How do we generate fake samples?

Mode Collapse

* What if G generates one realistic fake sample?
* Aslong as G fools D...

* Mode Collapse
 When G generates samples of limited diversity (often only a few)
e (This means G is trapped in a bad local minimum)

* Remedy

* Tune hyperparameters
e Use GAN variants (Wasserstein GAN, Unrolled GAN)

VAE vs Autoregressive vs GAN

Generated Samples

e VAE vs PixelCNN vs GAN

VAE

GAN

VAE

* Generation
e Sample from N(O, 1), then use decoder.

* Measuring performance
e Can use reconstruction loss between x and x'.
* Image quality

* Vanilla VAE generates blurry images
* Due to Mean Squared Error loss

* Modern VAEs generate better images

Pixel CNN

* Generation
* Given some initial pixels, generate rest of the pixels.
* (Relatively) slow generation process

* Measuring performance .
e Can use the likelihood of the sample po(z) = | [po(xila1, ..., zi-1)
=1
* Image quality
* Better than vanilla VAE
* Slow inference

GAN

* Generation
* Sample from Uniform or Gaussian, then use Generator.

* Measuring performance
o 777

* Image quality
* Sharpest quality

* StyleGAN generates 1024-by-1024 images successfully
* Mode collapse lurks

Cutting-edge Progress

* Diffusion VS Autoregressive

Google’s Parti (VQ+autogressive)
“A map of the United States made out of sushi.
It is on a table next to a glass of red wine.”

OpenAl’s DALL-E 2 (diffusion)
“An astronaut riding a horse in a photorealistic style”

Fvaluation

Evaluating GAN

* GAN uses an “implicit” distribution
* Unlike VAE or PixelCNN

* Difficult to measure the quality of fake samples.

* Two popular metrics
* Inception Score
* Frechet Inception Distance (FID) Score

Inception Score

* Use a pre-trained model to evaluate fake images
* Inception v3 model trained on ImageNet (1000 classes)

Input: 299x299x3, Output:8x8x2048

|

SEGOHEHE

Convolution Input: Output:
AvgPool 299x299x3 8x8x2048
MaxPool
Concat
Dropout

Final part:8x8x2048 -> 1001

Fully connected
Softmax

Inception Score

* Use a pre-trained model to evaluate fake images
* Inception v3 model trained on ImageNet (1000 classes)

* Two criteria
* Image quality
* Do images look like a specific object (i.e. class)?
* Image diversity
* |Is a wide range of objects generated?

https://machinelearningmastery.com/how-to-implement-the-inception-score-from-scratch-for-evaluating-generated-images/

https://machinelearningmastery.com/how-to-implement-the-inception-score-from-scratch-for-evaluating-generated-images/

Two Criteria

* Image quality
* A single image should have a focused p(y|x)
* A specific class should be preferred over other classes

* p(y|x) of low entropy =» High image quality
* Image diversity
* Marginal probability p(y) over all images should not focus on one class.
* p(y) of high entropy =» Diverse images
* We want the relative entropy of p(y|x) and p(y) to be large
* Large KL(p(y[x) || p(y))
* For specific algorithm, see appendix

Inception Score

* Worst score: 1.0

* Best score: N
* N being the number of output classes of the pre-trained model.
* Inception v3: 1000 classes

[1,0,0],[0,1,0],[0,0,1] =>» 1S 3.0
[0.33, 0.33, 0.33], [0.33, 0.33,0.33], [0.33,0.33,0.33] = IS 1.0

Frechet Inception Distance (FID) Score

* Also uses Inception v3
* Use the last pooling layer (i.e. image feature) instead of output probabilities

/s /
<>®<>@<>O@<><\}§ //

Final part:8x8x2048 -> 1001

* Compare the distributions of the features between real and fake.
* View the image features as Gaussian

e Calculate the distance between real/fake Gaussian distributions
* Using Frechet distance (also called Wasserstein-2 distance)

2048 D vector

FID Score

 Calculate the feature-wise (i.e. dimension-wise) statistics
* Mean & Covariance for real/fake features

e Calculate Frechet distance between two Gaussians
B2((m, C), (M, Cy)) = |m — my|2 + Tr(C + C, — 2(CC,)""?%)

* For specific algorithm, see appendix

FID Score Example

* Lower FID =» Better sample quality

400

FID

FID

350 A

300 1

250 1

200 4

150 A

100 A

50 1

250 1

200 A1

100 4

50 A

1 2
disturbance level

o

1 2
disturbance level

FID

FID

400 1
350 A1
300 1
250 1
200 4
150 A
100 4

50 1

ED

400 A

600

500

300 1

200 1

100 A

1 2 3
disturbance level

o

/
0

1 2
disturbance level

Applications of GAN

Text-to-Image GAN

* Reed et al. 2016
* Conditional image generation

* Inject text encoding
* |n the Generator
* |n the Discriminator

this small bird has a pink
breast and crown, and black
primaries and secondaries.

the flower has petals that
are bright pinkish purple
with white stigma

this magnificent fellow is
almost all black with a red
crest, and white cheek patch.

this white and yellow flower
have thin white petals and a
round yellow stamen

Cycle GAN

e Zhu et al. 2017

* Transfer style between two domains
e Adversarial loss / ____Monet T Photos _ _____ Zebras T Horses _ Summer _ Winter

* Cycle consistency

IR errr{Ry

Photograph Monet Van Gogh 7 Czanne

Style GAN

e Karras et al. 2019
* High resolution samples

* Using various techniques
e Put z through MLP
e AdalN

* Evolved from BatchNorm
* Bilinear upsampling
* Layer-wise noise

Al504: Programming for Artificial Intelligence

Week 6: Generative Adversarial Networks

Edward Choi
Grad School of Al
edwardchoi@kaist.ac.kr

Inception Score Algorithm

Ooo~NOYUTPAWN -

e
NEF S

=
W

calculate the inception score for p(ylx)
def calculate_inception_score(p_yx, eps=1E-16):
calculate p(y)
p_y = expand_dims(p_yx.mean(axis=0), 0)
kl divergence for each image
kl_d = p_yx * (log(p_yx + eps) - log(p_y + eps))
sum over classes
sum_kl_d = kl_d.sumCaxis=1)
average over images
avg_kl_d = mean(sum_kl_d)
undo the logs
i1s_score = exp(avg_kl_d)
return is_score

https://machinelearningmastery.com/how-to-implement-the-inception-score-from-scratch-for-evaluating-generated-images/

https://machinelearningmastery.com/how-to-implement-the-inception-score-from-scratch-for-evaluating-generated-images/

FID Score Algorithm

1 # calculate frechet inception distance

2 def calculate_fid(actl, act2):

3 # calculate mean and covariance statistics

4 mul, sigmal = actl.mean(axis=0), cov(actl, rowvar=False)
5 mu2, sigma2 = act2.mean(axis=0), cov(act2, rowvar=False)
6 # calculate sum squared difference between means

7 ssdiff = numpy.sum((mul - mu2)**2.0)

8 # calculate sqgrt of product between cov

9 covmean = sqrtm(sigmal.dot(sigma2))

10 # check and correct imaginary numbers from sqrt

11 if iscomplexobj(covmean):

12 covmean = covmeadn.real

13 # calculate score

14 fid = ssdiff + trace(sigmal + sigma2 - 2.0 * covmean)

15 return fid

https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/

https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/

