
AI504: Programming for Artificial Intelligence

Week 9: Word Embedding

Edward Choi

Grad School of AI

edwardchoi@kaist.ac.kr

Index

• Embedding
• Word/Document embedding

• Contextualized word embedding

• Sub-word encoding

Embedding
Word/Document Embedding

What is Word Embedding?

• Express a word as a vector

• 'cat' and 'kitty' are similar words, so they have similar vector

representations → short distance

• 'hamburger' is not similar with 'cat' or 'kitty’, so they have different

vector representations → far distance

Encoding Categorical Variable

• One-hot encoding or dummy encoding

• Encoding a categorical variable

e.g., a variable with one of the blood types (A, B, AB, and O)

• A = [1 0 0 0]T

• B = [0 1 0 0]T

• AB = [0 0 1 0]T

• O = [0 0 0 1]T.

Pre-existing word representation method
• Each word can be represented by a one-hot encoding which each word takes up

its respective dimension.

• horse = [0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]T

• zebra = [0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]T

• Inner-product similarity between two different words (e.g., horse and zebra) is a
lways 0.

• Euclidean distance between them is always 2

• However, ‘horse’ and ‘zebra’ should be semantically similar than ‘horse’ and
‘desk’, since they are living creatures and mammals.

Vectorization for document with pre-existing method

Building a term-document matrix by the method described in previous slides

This document vector is called a bag-of-words vector.

• e.g., Document 1 = “John likes movies. Mary likes too.”

Document 2 = “John also likes football.”

John

likes

movies

also

football

Mary

too

Vocabulary Doc 1 Doc 2

1

1

0

1

1

0

0

1

2

1

0

0

1

1

Similarity and distance between the two
documents can be obtained by their
inner product, cosine similarity, and
Euclidean distance.

Other vector representation methods

• Matrix factorization

• Singular value decomposition (or latent semantic indexing)

• Nonnegative matrix factorization

• Probabilistic topic modeling

• Probabilistic latent semantic indexing

• Latent Dirichlet allocation

Word Embedding methods

• Distributed vector representations

• Vector representation in the form of nonzero values across multiple

dimensions, as opposed to a conventional one-hot vector.

• Euclidean distance, inner product, and cosine similarity of two different word

vectors encode their semantic similarity

• Topics

• Word2Vec

• GloVe

• Doc2Vec (adaptation of Word2Vec for document vector)

Word2Vec

• An algorithm for training vector

representation of a word from

context words (adjacent words)

• Assumption: words in similar

context will have similar meanings.

• e.g.)

• The cat purrs.

• The cat hunts mice.

History of Word2Vec
• Learning representations by back-propagating errors (Rumelhart et al., 1986)

• A neural probabilistic language model (Bengio et al., 2003)

• NLP from Scratch (Collobert & Weston, 2008)

• Word2Vec (Mikolov et al., 2013):

• Efficient Estimation of Word Representation in a Vector Space

• Distributed Representations of words and phrases and their compositionality

• Reduced computational/complexity compared to conventional word
embedding models based on artificial neural networks (negative sampling,
hierarchical softmax)

Property of Word2Vec
• The word vector, or the relationship between vector points in space,

represents the relationship between the words.
• The same relationship is represented as the same vectors.

• e.g.,
vec[queen] – vec[king] = vec[woman] – vec[man]

Property of Word2Vec - Linear Substructure

man - woman

Property of Word2Vec - Linear Substructure

company - ceo

Property of Word2Vec - Linear Substructure

city - zip code

Property of Word2Vec - Linear Substructure

comparative
- superlative

Property of Word2Vec – Analogy Reasoning

• Korean Word2Vec : http://w.elnn.kr/search/

http://w.elnn.kr/search/

Property of Word2Vec – Analogy Reasoning

• More examples: http://wonjaekim.com/archives/50

http://wonjaekim.com/archives/50

Idea of Word2Vec

• “You shall know a word by the company it keeps”

- J. R. Firth 1957

• Suppose we read the word “cat”. What is the probability P(w|cat)
that we’ll read the word w nearby?

• Distributional Hypothesis: The meaning of “cat” is captured by the
probability distribution P(w|cat).

Two Models of Word2Vec

Continuous Bag-Of-Words (CBOW) Skip-gram

Context
words Center word

cat cat

Context
words

How Word2Vec Algorithm Works

• Select window size first

• Skipgram: predict context words from a center word
• Good at semantic tasks, but slow in training

• CBOW: predict a center word from context words
• Good at syntactic tasks, and relatively fast to train

How Word2Vec Algorithm Works
• V : vocabulary size

• N : embedding dimension

• Objective criterion (to maximize)

where

, which is a softmax function.

How Word2Vec Algorithm Works

https://ronxin.github.io/wevi/

• A vector representation of ‘eat’ in 𝑊1 has
similar pattern with vectors of ‘apple’,
‘orange’, and ‘rice’ in 𝑊2.

• When the input is 'eat', the model can
predict 'apple', 'orange’, or 'rice’ for output,
because the vectors have high inner product
values.

𝑊1 𝑊2

https://ronxin.github.io/wevi/

Softmax Implementations are Slow!

• Training parameters 𝑊1 and 𝑊2 is
very slow due to a softmax layer.

• The vocabulary size in English is
over millions, and all words must
be calculated and normalized in
order to compute the softmax
value in the output layer, so most
of the computation resources are
used for this increased additional
calculation.

Efficient Solution 1: Hierarchical Softmax
• Generate a binary tree of which

leaves are each words.

• Calculate the probability of the
word by multiplying the
probabilities following the path
from the root to the leaf.

• i.e., consider each internal node as
a Bernoulli random variable that
branches to the left and right
nodes,and calculate the
probability of each word.

• This reduces the calculation cost from 𝑉 to log 𝑉.

• Alternative method to Hierarchical softmax

• If we randomly sample a small number of words and perform softmax and
normalization, the calculation will be reduced from N x V to N x K (K :
number of samples being extracted).

• Words used for groundtruth output are called 'positive samples' because it
should be calculated. The key is how to choose the the 'negative samples'.

• Negative Sampling defines sampling from 'Noise Distribution' and uses a
fixed number of words from its distribution 𝑃𝑛(𝑤), which is experimentally
set to 'Unigram Distribution’ raised to the ¾th power.

Efficient Solution 2: Negative Sampling

Application of Word2Vec

Word2Vec improves performances in most areas of NLP.

• Word similarity

• Machine translation

• Part-of-speech tagging and named entity recognition

• Sentiment analysis

• Clustering

• Semantic lexicon building

GloVe: Another Word Embedding Model
GloVe: Global Vectors for Word Representation
• Rather than going through each pair of an input and an output words, it

first computes the co-occurrence matrix, to avoid training on identical
word pairs repetitively.

• Afterwards, it performs matrix decomposition on this co-occurrent matrix.

• Fast training

• Works well even with a small corpus

Doc2Vec (Paragraph2Vec)

• Idea: Represent a document (or paragraph) vector as a word

• Properties and Advantages

• The words in the same paragraphs and documents would have high similarity.

• A document can be embedded to the same space as a word vector.

Embedding
Sub-word Encoding

Words in writing systems

• Writing systems vary in how they represent words – or don’t

• No word segmentation

• Words (mainly) segmented: This is a sentence with words

• Clitics?

• Separated

• Joined

• Compounds?

• Separated

• Joined

Models below the word level

• Need to handle large, open vocabulary

• Rich morphology: nejneobhospodařovávatelnějšímu (“to the worst farmable one”)

• Transliteration: Christopher ↦ Kryštof

• Informal spelling:

Character-Level Models

• 1. Word embeddings can be composed from character embeddings

• Generates embeddings for unknown words

• Similar spellings share similar embeddings

• Solves out-of-vocabulary (OOV) problem

• 2. Connected language can be processed as characters

• Both methods have proven to work very successfully!

• Somewhat surprisingly – traditionally, phonemes/letters weren’t a semantic unit – but deep

learning models can successfully compose groups.

Purely character-level NMT models

• Initially, unsatisfactory performance

• (Vilar et al., 2007; Neubig et al., 2013)

• Decoder only

• (Junyoung Chung, Kyunghyun Cho, Yoshua Bengio. arXiv 2016).

• Then promising results

• (Wang Ling, Isabel Trancoso, Chris Dyer, Alan Black, arXiv 2015)

• (Thang Luong, Christopher Manning, ACL 2016)

• (Marta R. Costa-Jussà, José A. R. Fonollosa, ACL 2016)

English-Czech WMT 2015 Results

• Luong and Manning tested as a baseline a pure character-level seq2seq (LSTM)

NMT system

• It worked well against word-level baseline

• But, it was very slow

• 3 weeks to train … not that fast at runtime

Fully Character-Level Neural Machine Translation without Explicit Segmentation

• Jason Lee, Kyunghyun Cho, Thomas Hoffmann. 2017.

• Encoder as below; decoder is a char-level GRU

Sub-word models: two trends

• Same architecture as for word-level model:

• But use smaller units: “word pieces”

• [Sennrich, Haddow, Birch, ACL’16a],

• [Chung, Cho, Bengio, ACL’16].

• Hybrid architectures

• Main model has words; something else for characters

• [Costa-Jussà & Fonollosa, ACL’16],

• [Luong & Manning, ACL’16].

Byte Pair Encoding

• Originally a compression algorithm:

• Most frequent byte pair ↦ a new byte.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine
Translation of Rare Words with Subword Units. ACL 2016.

https://arxiv.org/abs/1508.07909
https://github.com/rsennrich/subword-nmt
https://github.com/EdinburghNLP/nematus

Byte Pair Encoding

• A word segmentation algorithm:

• Though done as bottom-up clustering

• Start with a unigram vocabulary of all (Unicode) characters in data

• Most frequent n-gram pairs ↦ a new n-gram

Byte Pair Encoding

• A word segmentation algorithm

• Start with a vocabulary of characters

• Most frequent n-gram pairs ↦ a new n-gram

(Example from Sennrich)

Byte Pair Encoding

• A word segmentation algorithm:

• Start with a vocabulary of characters

• Most frequent n-gram pairs ↦ a new n-gram

(Example from Sennrich)

Byte Pair Encoding

• A word segmentation algorithm:

• Start with a vocabulary of characters

• Most frequent n-gram pairs ↦ a new n-gram

(Example from Sennrich)

Byte Pair Encoding

• A word segmentation algorithm:

• Start with a vocabulary of characters

• Most frequent n-gram pairs ↦ a new n-gram

(Example from Sennrich)

Byte Pair Encoding

• Have a target vocabulary size and stop when you reach it

• Do deterministic longest piece segmentation of words

• Segmentation is only within words identified by some prior tokenizer (commonly

Moses tokenizer for MT)

• Automatically decides vocab for system

• No longer strongly “word” based in conventional way

https://github.com/EdinburghNLP/nematus

https://github.com/EdinburghNLP/nematus

Wordpiece/Sentencepiece model

• Google NMT (GNMT) uses a variant of this

• V1: wordpiece model

• V2: sentencepiece model

• Rather than char n-gram count, uses a greedy approximation to maximizing

language model log-likelihood to choose the pieces

• Add n-gram that maximally reduces perplexity

Wordpiece/Sentencepiece model

• Wordpiece model tokenizes inside words

• Sentencepiece model works from raw text

• Whitespace is retained as special token (_) and grouped normally

• You can reverse things at end by joining pieces and recoding them to spaces

• https://github.com/google/sentencepiece

• https://arxiv.org/pdf/1804.10959.pdf

https://github.com/google/sentencepiece
https://arxiv.org/pdf/1804.10959.pdf

Wordpiece/Sentencepiece model

• BERT uses a variant of the wordpiece model

• (Relatively) common words are in the vocabulary:

• at, fairfax, 1910s

• Other words are built from wordpieces:

• hypatia = h ##yp ##ati ##a

• If you’re using BERT in an otherwise word based model, you have to deal with this

Embedding
Contextualized Word Embedding

We should consider Context!

ELMo, GPT, BERT

• Token embeddings change depending on the context!

• ELMo: Bidirectional LSTM

• GPT: Transformer Encoder + Masked Attention

• BERT: Transformer Encoder

AI504: Programming for Artificial Intelligence

Week 9: Word Embedding

Edward Choi

Grad School of AI

edwardchoi@kaist.ac.kr

