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What is Word Embedding?

• Express a word as a vector

• 'cat' and 'kitty' are similar words, so they have similar vector 

representations → short distance

• 'hamburger' is not similar with 'cat' or 'kitty’,  so they have different 

vector representations → far distance



Encoding Categorical Variable

• One-hot encoding or dummy encoding

• Encoding a categorical variable

e.g., a variable with one of the blood types (A, B, AB, and O)

• A = [ 1 0 0 0 ]T

• B = [ 0 1 0 0 ]T

• AB = [ 0 0 1 0 ]T

• O = [ 0 0 0 1]T.



Pre-existing word representation method
• Each word can be represented by a one-hot encoding which each word takes up 

its respective dimension.

• horse = [ 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ]T

• zebra = [ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ]T

• Inner-product similarity between two different words (e.g., horse and zebra) is a
lways 0.

• Euclidean distance between them is always 2

• However, ‘horse’ and ‘zebra’ should be semantically similar than ‘horse’ and 
‘desk’, since they are living creatures and mammals.



Vectorization for document with pre-existing method

Building a term-document matrix by the method described in previous slides 

This document vector is called a bag-of-words vector.

• e.g., Document 1 = “John likes movies. Mary likes too.”

Document 2 = “John also likes football.”
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Similarity and distance between the two 
documents can be obtained by their 
inner product, cosine similarity, and 
Euclidean distance.



Other vector representation methods

• Matrix factorization

• Singular value decomposition (or latent semantic indexing)

• Nonnegative matrix factorization

• Probabilistic topic modeling

• Probabilistic latent semantic indexing

• Latent Dirichlet allocation



Word Embedding methods

• Distributed vector representations

• Vector representation in the form of nonzero values across multiple 

dimensions, as opposed to a conventional one-hot vector.

• Euclidean distance, inner product, and cosine similarity of two different word 

vectors encode their semantic similarity

• Topics

• Word2Vec

• GloVe

• Doc2Vec (adaptation of Word2Vec for document vector)



Word2Vec

• An algorithm for training vector 

representation of a word from 

context words (adjacent words)

• Assumption:  words in similar 

context will have similar meanings.

• e.g.)

• The cat purrs.

• The cat hunts mice.



History of Word2Vec
• Learning representations by back-propagating errors (Rumelhart et al., 1986)

• A neural probabilistic language model (Bengio et al., 2003)

• NLP from Scratch (Collobert & Weston, 2008)

• Word2Vec (Mikolov et al., 2013):

• Efficient Estimation of Word Representation in a Vector Space

• Distributed Representations of words and phrases and their compositionality

• Reduced computational/complexity compared to conventional word 
embedding models based on artificial neural networks (negative sampling, 
hierarchical softmax)



Property of Word2Vec
• The word vector, or the relationship between vector points in space, 

represents the relationship between the words.
• The same relationship is represented as the same vectors.

• e.g.,
vec[queen] – vec[king] = vec[woman] – vec[man]



Property of Word2Vec - Linear Substructure

man - woman



Property of Word2Vec - Linear Substructure

company - ceo



Property of Word2Vec - Linear Substructure

city - zip code



Property of Word2Vec - Linear Substructure

comparative 
- superlative



Property of Word2Vec – Analogy Reasoning

• Korean Word2Vec : http://w.elnn.kr/search/

http://w.elnn.kr/search/


Property of Word2Vec – Analogy Reasoning

• More examples: http://wonjaekim.com/archives/50

http://wonjaekim.com/archives/50


Idea of Word2Vec

• “You shall know a word by the company it keeps”

- J. R. Firth 1957

• Suppose we read the word “cat”. What is the probability P(w|cat) 
that we’ll read the word w nearby?

• Distributional Hypothesis: The meaning of “cat” is captured by the 
probability distribution P(w|cat).



Two Models of Word2Vec

Continuous Bag-Of-Words (CBOW) Skip-gram

Context
words Center word

cat cat

Context
words



How Word2Vec Algorithm Works

• Select window size first

• Skipgram: predict context words from a center word
• Good at semantic tasks, but slow in training

• CBOW: predict a center word from context words
• Good at syntactic tasks, and relatively fast to train



How Word2Vec Algorithm Works
• V : vocabulary size

• N : embedding dimension

• Objective criterion (to maximize)

where

, which is a softmax function. 



How Word2Vec Algorithm Works

https://ronxin.github.io/wevi/

• A vector representation of ‘eat’ in 𝑊1 has 
similar pattern with vectors of ‘apple’, 
‘orange’, and ‘rice’ in 𝑊2.

• When the input is 'eat', the model can 
predict 'apple', 'orange’, or 'rice’ for output, 
because the vectors have high inner product 
values.

𝑊1 𝑊2

https://ronxin.github.io/wevi/


Softmax Implementations are Slow!

• Training parameters 𝑊1 and 𝑊2 is 
very slow due to a softmax layer.

• The vocabulary size in English is 
over millions, and all words must 
be calculated and normalized in 
order to compute the softmax
value in the output layer, so most 
of the computation resources are 
used for this increased additional 
calculation.



Efficient Solution 1: Hierarchical Softmax
• Generate a binary tree of which 

leaves are each words.

• Calculate the probability of the 
word by multiplying the 
probabilities following the path 
from the root to the leaf.

• i.e., consider each internal node as 
a Bernoulli random variable that 
branches to the left and right 
nodes,and calculate the 
probability of each word.

• This reduces the calculation cost from 𝑉 to log 𝑉.



• Alternative method to Hierarchical softmax

• If we randomly sample a small number of words and perform softmax and 
normalization, the calculation will be reduced from N x V to N x K (K : 
number of samples being extracted).

• Words used for groundtruth output are called 'positive samples' because it 
should be calculated. The key is how to choose the the 'negative samples'.

• Negative Sampling defines sampling from 'Noise Distribution' and uses a 
fixed number of words from its distribution 𝑃𝑛(𝑤), which is experimentally 
set to 'Unigram Distribution’ raised to the ¾th power.

Efficient Solution 2: Negative Sampling



Application of Word2Vec

Word2Vec improves performances in most areas of NLP.

• Word similarity

• Machine translation

• Part-of-speech tagging and named entity recognition

• Sentiment analysis

• Clustering 

• Semantic lexicon building



GloVe: Another Word Embedding Model
GloVe: Global Vectors for Word Representation
• Rather than going through each pair of an input and an output words, it 

first computes the co-occurrence matrix, to avoid training on identical 
word pairs repetitively.  

• Afterwards, it performs matrix decomposition on this co-occurrent matrix. 

• Fast training

• Works well even with a small corpus



Doc2Vec (Paragraph2Vec)

• Idea: Represent a document (or paragraph) vector as a word

• Properties and Advantages

• The words in the same paragraphs and documents would have high similarity.

• A document can be embedded to the same space as a word vector.



Embedding
Sub-word Encoding



Words in writing systems

• Writing systems vary in how they represent words – or don’t 

• No word segmentation

• Words (mainly) segmented:  This is a sentence with words

• Clitics?

• Separated 

• Joined

• Compounds?

• Separated

• Joined



Models below the word level

• Need to handle large, open vocabulary

• Rich morphology: nejneobhospodařovávatelnějšímu (“to the worst farmable one”)

• Transliteration: Christopher ↦ Kryštof

• Informal spelling:



Character-Level Models

• 1.  Word embeddings can be composed from character embeddings

• Generates embeddings for unknown words

• Similar spellings share similar embeddings

• Solves out-of-vocabulary (OOV) problem

• 2.  Connected language can be processed as characters

• Both methods have proven to work very successfully!

• Somewhat surprisingly – traditionally, phonemes/letters weren’t a semantic unit – but deep 

learning models can successfully compose groups. 



Purely character-level NMT models

• Initially, unsatisfactory performance

• (Vilar et al., 2007; Neubig et al., 2013)

• Decoder only

• (Junyoung Chung, Kyunghyun Cho, Yoshua Bengio. arXiv 2016).

• Then promising results

• (Wang Ling, Isabel Trancoso, Chris Dyer, Alan Black, arXiv 2015) 

• (Thang Luong, Christopher Manning, ACL 2016)

• (Marta R. Costa-Jussà, José A. R. Fonollosa, ACL 2016)



English-Czech WMT 2015 Results

• Luong and Manning tested as a baseline a pure character-level seq2seq (LSTM) 

NMT system

• It worked well against word-level baseline

• But, it was very slow

• 3 weeks to train … not that fast at runtime



Fully Character-Level Neural Machine Translation without Explicit Segmentation

• Jason Lee, Kyunghyun Cho, Thomas Hoffmann. 2017. 

• Encoder as below; decoder is a char-level GRU



Sub-word models: two trends

• Same architecture as for word-level model:

• But use smaller units: “word pieces”

• [Sennrich, Haddow, Birch, ACL’16a], 

• [Chung, Cho, Bengio, ACL’16].

• Hybrid architectures

• Main model has words; something else for characters 

• [Costa-Jussà & Fonollosa, ACL’16], 

• [Luong & Manning, ACL’16].



Byte Pair Encoding

• Originally a compression algorithm: 

• Most frequent byte pair ↦ a new byte.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural Machine 
Translation of Rare Words with Subword Units. ACL 2016. 

https://arxiv.org/abs/1508.07909 
https://github.com/rsennrich/subword-nmt
https://github.com/EdinburghNLP/nematus



Byte Pair Encoding

• A word segmentation algorithm:

• Though done as bottom-up clustering

• Start with a unigram vocabulary of all (Unicode) characters in data

• Most frequent n-gram pairs ↦ a new n-gram



Byte Pair Encoding

• A word segmentation algorithm

• Start with a vocabulary of characters

• Most frequent n-gram pairs ↦ a new n-gram

(Example from Sennrich)
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Byte Pair Encoding

• A word segmentation algorithm:

• Start with a vocabulary of characters

• Most frequent n-gram pairs ↦ a new n-gram

(Example from Sennrich)



Byte Pair Encoding

• Have a target vocabulary size and stop when you reach it 

• Do deterministic longest piece segmentation of words 

• Segmentation is only within words identified by some prior tokenizer (commonly 

Moses tokenizer for MT)

• Automatically decides vocab for system

• No longer strongly “word” based in conventional way

https://github.com/EdinburghNLP/nematus

https://github.com/EdinburghNLP/nematus


Wordpiece/Sentencepiece model

• Google NMT (GNMT) uses a variant of this 

• V1: wordpiece model 

• V2: sentencepiece model 

• Rather than char n-gram count, uses a greedy approximation to maximizing 

language model log-likelihood to choose the pieces 

• Add n-gram that maximally reduces perplexity



Wordpiece/Sentencepiece model

• Wordpiece model tokenizes inside words

• Sentencepiece model works from raw text

• Whitespace is retained as special token (_) and grouped normally 

• You can reverse things at end by joining pieces and recoding them to spaces

• https://github.com/google/sentencepiece

• https://arxiv.org/pdf/1804.10959.pdf

https://github.com/google/sentencepiece
https://arxiv.org/pdf/1804.10959.pdf


Wordpiece/Sentencepiece model

• BERT uses a variant of the wordpiece model 

• (Relatively) common words are in the vocabulary:  

• at, fairfax, 1910s 

• Other words are built from wordpieces: 

• hypatia = h ##yp ##ati ##a  

• If you’re using BERT in an otherwise word based model, you have to deal with this



Embedding
Contextualized Word Embedding



We should consider Context!



ELMo, GPT, BERT

• Token embeddings change depending on the context!

• ELMo: Bidirectional LSTM

• GPT: Transformer Encoder + Masked Attention

• BERT: Transformer Encoder
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