
AI504: Programming for Artificial Intelligence

Week 5: Variational Autoencoder

Edward Choi
Grad School of AI

edwardchoi@kaist.ac.kr

Today’s Topic

• Generative Autoencoder
• Variational Inference
• Variational Autoencoder
• Training VAE
• Reparametrization Trick

Generative Autoencoder

Autoencoder

• Consists of Encoder and Decoder

Encoding (Compression) Decoding (Decompression)

Code , Latent Variables, Latent Representation

-1.2

3.1

0.2

-0.9

Autoencoder

• Mean Squared Error (MSE) loss

0
1

0
0

0
1

0
0

0
0

1
1

…
…

…

0
1

0
0

0
1

0
0

0
0

1
1

…
…

…

f(W1x+b1) f(W2z+b2)

z

x x’

• Encoding
• z = f(W1x+b1)

• Decoding
• x’= f(W2z+b2)

• Loss
• ℒ x, x′ = x − x′ !

!

(Squared Error)

-1.2

3.1

0.2

-0.9

Autoencoder

• Compression

0
1

0
0

0
1

0
0

0
0

1
1

…
…

…

0
1

0
0

0
1

0
0

0
0

1
1

…
…

…

f(W1x+b1) f(W2z+b2)

z

x x’

Information Bottleneck

Need to pack all information in 4-D
è Need to learn some useful hidden features

-1.2

3.1

0.2

-0.9

Latent Representations

-1.2

3.1

0.2

-0.9

0.5

-2.1

-1.8

1.7

0.9

-1.9

-2.6

1.9

Latent Representation

• Digits are compressed to a 4-D space.

Generating Samples

• How can we generate new samples?

Generating New Samples

• Perturb an existing z?

Perturb this sample to
generate new images of 1?

Generating New Samples

• Sample from a region?

Sample random points from
this area to generate images of 1?

Generating New Samples

• Generating new samples
• Perturb a known z
• Sample from a region

• Which region do you sample?

• Both are not guaranteed to work

Example: Perturbing z
• Using an AE trained on MNIST for 50 epochs.

True 9

Reconstruction

Perturbed z

Noise ~ N(0, 0.5) Noise ~ N(0, 1.0)

Example: Perturbing z
• Cannot generate diverse/novel samples

True 9

Reconstruction

Perturbed z

Noise ~ N(0, 0.5) Noise ~ N(0, 1.0)

Variational Inference

Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X
• We are interested in the value

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X
• We are interested in the value

• Ex) Topic (Z) of newpaper articles (X)
• Ex) Latent representations (Z) of MNIST images (X)

Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X
• We are interested in the value

• Usually, a true posterior distribution in intractable
• Using Bayesian principle,

Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X
• We are interested in the value

• Usually, a true posterior distribution in intractable
• Using Bayesian principle,

This is often combinatorially large (even infinite!)

Posterior Distribution

• Given data X and unobserved (latent/hidden) variables Z
• Assume Z determines X
• We are interested in the value

• Usually, a true posterior distribution in intractable
• Using Bayesian principle,

• Instead, approximate with a simpler function Q (often Gaussian)!

Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• Note that DKL is not symmetric (i.e. it is not a distance!)
• This formulation is called “Reverse KL”

(Assuming Z is a discrete variable)

Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• Maximizing the ELBO leads to minimizing DKL

: Evidence Lower Bound (ELBO)

Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• Maximizing the ELBO leads to minimizing DKL
• We converted an inference problem to an optimization problem!
• For Gaussian Q, we can learn 𝜇 and 𝜎.

: Evidence Lower Bound (ELBO)

Learning Q(Z)

• We want Q(Z) as similar to P(Z | X) as possible
• Minimize Kullback-Leibler divergence (KL-Divergence)

• is also called “variational free energy”
: Evidence Lower Bound (ELBO)

ℒ(𝑄) = 𝔼" log 𝑃(𝐙, 𝐗) + 𝐻(𝑄) (H: Information Entropy)

Variational Autoencoder

VAE

• Objective
• Compress x to z which follows P(Z | X)
• Decompress z to reconstruct x

Encoding (Compression) Decoding (Decompression)

This follows the distribution P (e.g. Gaussian)

-1.2

3.1

0.2

-0.9

VAE

• Objective
• Compress x to z which follows P(Z | X)
• Decompress z to reconstruct x

Decoding (Decompression)

This follows the distribution P (e.g. Gaussian N(0, 1))

-1.2

3.1

0.2

-0.9

Encoding (Compression)

VAE

• Objective
• Compress x to z which follows P(Z | X)
• Decompress z to reconstruct x

• This allows us to
• Map data distribution P(X) to a probability distribution P(Z)
• Sample z from P(Z), which can be converted to x

Decoding (Decompression)

This follows the distribution P (e.g. Gaussian)

-1.2

3.1

0.2

-0.9

Encoding (Compression)

Latent Space: AE vs VAE

https://avandekleut.github.io/vae/

AE VAE

https://avandekleut.github.io/vae/

VAE Loss

• Loss consists of
• Reconstruction loss
• Regularization term

• Force z to follow Gaussian distribution

• Loss for a single sample 𝑥!

• In autoencoders, negative log likelihood is reconstruction loss

Encoder network
parametrized by 𝜃

Decoder network
parametrized by 𝜙

Usually
𝒩 0, 1

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

VAE: Probability Point of View

• We want to infer P(Z | X)
• The posterior distribution given data X

VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• Use Q𝜆(Z | X) instead of Q(Z)
• Because Z is determined by X
• This will be our encoder
• 𝜆 is 𝜇, 𝜎 for Gaussian Q è Encoder generates 𝜇, 𝜎

(Original VI)

VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• Use Q𝜆(Z | X) instead of Q(Z)
• Because Z is determined by X
• This will be our encoder
• 𝜆 is 𝜇, 𝜎 for Gaussian Q è Encoder generates 𝜇, 𝜎

• We want to learn an encoder

(Original VI)

VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• The new ELBO term

(Original VI)

(Original ELBO)

VAE Posterior Distribution

• Since P(Z | X) is intractable, use variational inference

• The new ELBO term

ELBO term for each sample 𝑥!

ELBO Term

• ELBO term for each 𝑥!

• Parametrize the components
• Approximate posterior q with 𝜃
• Likelihood p with 𝜙

• The parametrized ELBO term

ELBO Term

• ELBO term for each 𝑥!

• Parametrize the components
• Approximate posterior q with 𝜃
• Likelihood p with 𝜙

• The parametrized ELBO term

Remind you of something??

ELBO Term

• ELBO term for each 𝑥!

• Parametrize the components
• Approximate posterior q with 𝜃
• Likelihood p with 𝜙

• The parametrized ELBO term

ELBO Term

• The parametrized ELBO term

• Maximizing the ELBO is equivalent to minimizing the loss!

VAE ELBO is the negative loss!!

ELBO Term

• The parametrized ELBO term

• Maximizing the ELBO is equivalent to minimizing the loss!

• ELBO can be maximized by both
• Updating the encoder network (i.e. learning 𝜃)
• Updating the decoder network (i.e. learning 𝜙)

ELBO Term

• The parametrized ELBO term

• Maximizing the ELBO is equivalent to minimizing the loss!

• ELBO can be maximized by both
• Updating the encoder network (i.e. learning 𝜃)
• Updating the decoder network (i.e. learning 𝜙)
• In practice, update both params together.

Training VAE

Training VAE

• Loss function

• How do you train your network?

Training VAE

• Loss function

• Using a random sample 𝑥! as an example:
• Push 𝑥) into the encoder
• Obtain 𝜇𝑖, 𝜎𝑖
• Sample (many) 𝑧𝑖 from 𝒩 𝜇𝑖, 𝜎𝑖 è Monte Carlo Estimation of Ez[f(z)]
• Insert 𝑧𝑖 into the decoder
• Obtain 𝑥)*

• Calculate squared error 𝑥)* − 𝑥) ! and 𝐷𝐾𝐿(𝒩 𝜇𝑖, 𝜎𝑖 ||𝒩 0,1)
• Backpropagate
• Update 𝜃 and 𝜙

Training VAE

• Loss function

• Using a random sample 𝑥! as an example:
• Push 𝑥) into the encoder
• Obtain 𝜇𝑖, 𝜎𝑖
• Sample (many) 𝑧𝑖 from 𝒩 𝜇𝑖, 𝜎𝑖 è Monte Carlo Estimation of Ez[f(z)]
• Insert 𝑧𝑖 into the decoder
• Obtain 𝑥)*

• Calculate squared error 𝑥)* − 𝑥) ! and 𝐷𝐾𝐿(𝒩 𝜇𝑖, 𝜎𝑖 ||𝒩 0,1)
• Backpropagate
• Update 𝜃 and 𝜙

This has an analytical expression,

which can be used to update 𝜃

1
2 (𝜇!

" + 𝜎!" − log 𝜎!"−1)

Training VAE

• Loss function

• Using a random sample 𝑥! as an example:
• Push 𝑥) into the encoder
• Obtain 𝜇𝑖, 𝜎𝑖
• Sample (many) 𝑧𝑖 from 𝒩 𝜇𝑖, 𝜎𝑖 è Monte Carlo Estimation of Ez[f(z)]
• Insert 𝑧𝑖 into the decoder
• Obtain 𝑥)*

• Calculate squared error 𝑥)* − 𝑥) ! and 𝐷𝐾𝐿(𝒩 𝜇𝑖, 𝜎𝑖 ||𝒩 0,1)
• Backpropagate
• Update 𝜃 and 𝜙

How about this?

Stochasticity in the Network

• 𝑥!# − 𝑥! $ involves a random sample 𝑧𝑖
• 𝑥)* is decoded based on 𝑧)~𝒩 𝜇𝑖, 𝜎𝑖

• One can backpropagate through the decoder.
• Consider 𝑧) as an input to the decoder
• We can obtain 5ℒ

57
 via chain-rule (ℒ = MSE Loss)

Stochasticity in the Network

• 𝑥!# − 𝑥! $ involves a random sample 𝑧𝑖
• 𝑥)* is decoded based on 𝑧)~𝒩 𝜇𝑖, 𝜎𝑖

• One can backpropagate through the decoder.
• Consider 𝑧) as an input to the decoder
• We can obtain 5ℒ

57
 via chain-rule (ℒ = MSE Loss)

• Can you backpropagate through the encoder to obtain %ℒ
%'

?

Stochasticity in the Network

• 𝑥!# − 𝑥! $ involves a random sample 𝑧𝑖
• 𝑥)* is decoded based on 𝑧)~𝒩 𝜇𝑖, 𝜎𝑖

• One can backpropagate through the decoder.
• Consider 𝑧) as an input to the decoder
• We can obtain 5ℒ

57
 via chain-rule (ℒ = MSE Loss)

• Can you backpropagate through the encoder to obtain %ℒ
%'

?
• How would you get past the randomly sampled 𝑧)?

Stochasticity in the Network

• Can you backpropagate through the encoder to obtain %ℒ
%'

?
• How would you get past the randomly sampled 𝑧)?

: Deterministic Node

: Random Node

ℒ

	"

	# $

~𝒩 𝜇, 𝜎

Reparametrization Trick

• Can you backpropagate through the encoder to obtain %ℒ
%'

?
• How would you get past the randomly sampled 𝑧)?

ℒ

	"

	# $

~𝒩 𝜇, 𝜎

ℒ

	# $ 	"

	% = 𝜇 + 𝜎 ∗ 𝜀

: Deterministic Node

: Random Node

Reparametrization Trick

• Can you backpropagate through the encoder to obtain %ℒ
%'

?
• How would you get past the randomly sampled 𝑧)?

ℒ

	"

	# $

~𝒩 𝜇, 𝜎

Reparametrization Trick:
Randomness is removed from the backprop path.

: Deterministic Node

: Random Node

ℒ

	# $ 	"

	% = 𝜇 + 𝜎 ∗ 𝜀

The Big Picture

• The entire flow chart

http://gregorygundersen.com/blog/2018/04/29/reparameterization/

𝜙

𝜃

http://gregorygundersen.com/blog/2018/04/29/reparameterization/

Training Process

• Training VAE on MNIST images
• Plotting 2-dimensional z for each encoded image as training proceeds

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Image Generation

• Sample z from 2-dimensional space then decode.
• Range [-3, 3] for both axes.

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/

Conclusion

• VAE is an elegant solution for approximating P(Z | X)
• It is still an approximation though
• The two mapping functions are disconnected

• Encoder and decoder use separate parameters

• Normalizing Flow
• Use invertible functions to map between p(X) and p(Z)

• 𝛽-VAE, TC-VAE
• Disentangling the latent space
• We want each z dimension to have an interpretable role.

• Rotation of the image, skewedness of the image, color of the image, etc.

• You can use VAE to generate sequences or graphs.

AI504: Programming for Artificial Intelligence

Week 5: Variational Autoencoder

Edward Choi
Grad School of AI

edwardchoi@kaist.ac.kr

